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Abstract

This paper proposes a multiple instance
learning (MIL) algorithm for Gaussian pro-
cesses (GP). The GP-MIL model inherits two
crucial benefits from GP: (i) a principle man-
ner of learning kernel parameters, and (ii)
a probabilistic interpretation (e.g., variance
in prediction) that is informative for better
understanding of the MIL prediction prob-
lem. The bag labeling protocol of the MIL
problem, namely the existence of a positive
instance in a bag, can be effectively repre-
sented by a sigmoid likelihood model through
the max function over GP latent variables.
To circumvent the intractability of exact GP
inference and learning incurred by the non-
continuous max function, we suggest two ap-
proximations: first, the soft-max approxima-
tion; second, the use of witness indicator
variables optimized with a deterministic an-
nealing schedule. The effectiveness of GP-
MIL against other state-of-the-art MIL ap-
proaches is demonstrated on several bench-
mark MIL datasets.

1. Introduction

In supervised learning the training data consist of pairs
of input objects (typically vectors) and the desired
outputs, {(xi, yi)}ni=1. Throughout the paper, we will
consider the binary classification setting, where yi ∈
{+1,−1}. In multiple instance learning (MIL) (Diet-
terich et al., 1997), on the other hand, the assumption
that each instance has one label is relaxed in the fol-
lowing manner: (i) we are given B bags of instances
{Xb}Bb=1 where each bag, Xb = {xb,1, . . . ,xb,nb

}, con-
sists of nb instances (

∑
b nb = n), and (ii) the labels

are provided only at the bag-level such that for each
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bag b, Yb = −1 if yi = −1 for all i ∈ b, and Yb = +1 if
yi = +1 for some i ∈ b.

The notion of bag together with the labeling protocol
often makes the MIL formulation more realistic than
the standard classification setting for particular types
of applications such as image retrieval (Zhang et al.,
2002; Gehler & Chapelle, 2007), and text classifica-
tion (Andrews et al., 2003). For instance, content-
based image retrieval fits the MIL framework well be-
cause an image can be represented as a bag comprised
of smaller regions/patches (i.e., instances). Given a
query for a particular object, one may be only in-
terested in deciding whether the image contains the
queried object (Yb = +1) or not (Yb = −1), instead
of solving the more difficult (and usually unnecessary)
problem of labeling every single patch in the image.
Similarly, in text classification, one is more concerned
with the concept/topic (i.e., bag label) of an entire
paragraph than labeling each of the sentences that
comprise the paragraph. Other applications include
object detection (Viola et al., 2005), time series clas-
sification (Nguyen et al., 2009) and protein identifica-
tion (Tao et al., 2004).

Traditionally, the MIL problem was tackled by spe-
cially tailored algorithms; for example, the hypothesis
class of axis-parallel rectangles (Dietterich et al., 1997)
and the so-called diverse density to define a measure
of proximity between a bag and a positive intersec-
tion point (Maron & Lozano-Perez, 1998). Another
class of algorithms treats the MIL problem as a stan-
dard classification problem at a bag-level via proper
development of kernels or distance measures on the
bag space (Wang & Zucker, 2000; Gärtner et al., 2002;
Tao et al., 2004; Chen et al., 2006).

Recently, a different perspective that regards MIL as
a missing-label problem has emerged. Unlike the neg-
ative instances which are all labeled negatively, the
instances in the positive bags are considered as latent
variables with the positive bag constraint (i.e., at least
one of them is positive,

∑
i
yi+1
2 ≥ 1). In this treat-

ment, a direct approach is to formulate a standard
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(instance-level) classification problem (e.g., SVM) that
can be optimized over the model and the latent vari-
ables simultaneously. The mi-SVM approach of (An-
drews et al., 2003) is derived in this manner.

One drawback of such approaches is that they involve
a (mixed) integer programming which is generally dif-
ficult to solve. For instance, in (Andrews et al., 2003),
certain heuristic optimization methods were employed.
Recently, the deterministic annealing (DA) algorithm
has been employed (Gehler & Chapelle, 2007), which
approximates the original problem to a continuous
optimization by introducing binary random variables
in conjunction with the temperature-scaled entropy
term. The DA algorithm begins with a high temper-
ature to solve a easier convex-like problem, and itera-
tively reduces the temperature with the warm starts.

Instead of dealing with all the instances in a positive
bag individually, a more insightful strategy is to fo-
cus on the most positive instance, often referred to as
the witness, which is responsible for determining the
label of a positive bag. In the SVM formulation, the
MI-SVM of (Andrews et al., 2003) directly aims at
maximizing the margin of the instance with the most
positive confidence w.r.t. the current model w (i.e.,
maxi∈b〈w,xb,i〉), while in the MICA algorithm (Man-
gasarian & Wild, 2008), they indirectly form a wit-
ness using convex combination over all instances in a
positive bag. The EM-DD algorithm of (Zhang et al.,
2002) extends the diverse density framework of (Maron
& Lozano-Perez, 1998) by incorporating the witnesses.
In (Gehler & Chapelle, 2007) the DA algorithms have
also been applied to the witness-identifying SVMs, ex-
hibiting superior performance to existing approaches.

Although some of these MIL algorithms, especially the
SVM-based discriminative methods, are quite effective
for a variety of situations, most approaches are non-
probabilistic, thus unable to capture the underlying
generative process of the data. In this paper we intro-
duce a novel MIL algorithm using Gaussian processes
(GP), which we call it GPMIL. Motivated by the fact
that a bag label is solely determined by the instance
that has the highest confidence toward the positive
class, we design the bag class likelihood as the sig-
moid function over the maximum GP latent variables
on the instances. By marginalizing out the latent vari-
ables, we have a nonparametric, nonlinear probabilis-
tic model P (Yb|Xb) that fully respects the bag labeling
protocol of MIL.

Dealing with a probabilistic bag class model is not
completely new. For instance, the Noisy-OR model
suggested by (Viola et al., 2005) is a reasonable direc-
tion, where the learning is formulated within the func-

tional gradient boosting framework (Friedman, 1999).
A similar Noisy-OR modeling has also been proposed
recently by (Raykar et al., 2008) where their Bayesian
treatment is shown to lead to effective feature selec-
tion. In these approaches, however, the bag class
model is built from the instance-level classification
models P (yi|xi), more specifically, P (Yb = −1|Xb) =∏
i∈b P (yi = −1|xi) and P (Yb = +1|Xb) = 1−P (Yb =
−1|Xb), which may incur several drawbacks. First
of all, it involves additional modeling effort for the
instance-level classifiers, which may be unnecessary,
or only indirectly relevant to the bag class decision.
Moreover, the Noisy-OR model combines the instance-
level classifiers in a product form, treating each in-
stance independently. This ignores the impact of po-
tential interaction among the neighboring instances,
which may be crucial for accurate bag class prediction.
On the other hand, our GPMIL represents the bag
class model directly without using typically unneces-
sary instance-level classifiers. The interaction among
instances is also incorporated through the GP prior,
which essentially enforces a smoothness regularization
along the neighboring structure of the instances.

In addition to the above-mentioned advantages, the
most important benefit of the GPMIL, unlike SVM-
based approaches, is that the kernel hyperparameters
can be learned in a principled manner (e.g., empirical
Bayes). Thus, avoiding a grid search and able to ex-
ploit a variety of kernel families with complex forms.
Unfortunately, one caveat of the GPMIL is the com-
putational issue. To circumvent the intractability in
the exact GP inference and learning incurred by the
non-continuous max function, we suggest two approx-
imations: the soft-max approximation, and the use of
witness indicator variables which can be further opti-
mized by a deterministic annealing schedule. Both ap-
proaches often exhibit more accurate prediction than
most recent SVM variants.

The paper is organized as follows: In Sec. 2 the GP-
MIL framework is introduced with the soft-max ap-
proximation for inference and learning. The witness
variable based approximation for GPMIL is described
in Sec. 3. Experimental results on both synthetic data
and real-world MIL benchmark datasets are provided
in Sec. 4. We conclude the paper in Sec. 5.

2. GP Multiple Instance Learning

This section proposes a novel Gaussian process (GP)
model for the MIL problem, which we denote by GP-
MIL. Our approach builds a bag class likelihood model
from the GP latent variables, where the likelihood is
the sigmoid of the maximum latent variables. The
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Figure 1. Graphical model for GPMIL.

readers are encouraged to refer to the standard ma-
terials, e.g. (Rasmussen & Williams, 2006), for the
backgrounds on the Gaussian process and the nota-
tions used in the paper.

In the GP framework, we consider the latent variable
f for each input x, which can be seen as a function
evaluated at (or indexed by) x, i.e., f(x), where the
real-valued (nonlinear) function f(·) follows the GP
prior. The GP prior is characterized by the covariance
function (i.e., kernel) k(·, ·) defined on the input space,
which implies that:

Cov(f(xi), f(xj)) = k(xi,xj), for any xi and xj . (1)

We assume that the bag b is comprised of nb points
Xb = {xb,1, . . . ,xb,nb

}. We then denote the GP la-
tent variables for the bag b by Fb = {fb,1, . . . , fb,nb

}.
Similar to the standard GP classification case, we will
consider fi (∈ Fb) as a confidence score toward the
(instance-level) positive class for xi (∈ Xb). That is,
the sign of fi indicates the (instance-level) class la-
bel yi, and its magnitude implies how confident it is.
In MIL, our goal is to devise a bag class likelihood
model P (Yb|Fb) instead of the instance-level model
P (yi|fi). Note that the latter is a special case of the
former since an instance can be seen as a singleton
bag. Once we have the bag class likelihood model,
we can then marginalize out all the latent variables
F = {Fb}Bb=1 under the Bayesian formalism using the
GP prior P (F|X) given the entire input X = {Xb}Bb=1.

Now, consider the situation where the bag b is labeled

as positive (Yb = +1). The chance is determined solely
by the single point that is the most likely positive (i.e.,
the largest f). The larger the confidence f , the higher
the chance is. The other instances do not contribute
to the bag label prediction no matter what their confi-
dence scores are. Hence, we can write the probability
of a bag b labeled as positive as:

P (Yb = +1|Fb) ∝ exp(max
i∈b

fi). (2)

Similarly, the odds of the bag b being labeled as neg-
ative (Yb = −1) is affected solely by the single point
which is the least likely negative. As far as that point
has a negative confidence f , the label of the bag is
negative, and the larger the confidence −f , the higher
the chance is. This leads to the model:

P (Yb = −1|Fb) ∝ exp(min
i∈b
−fi). (3)

Combining (2) and (3), we have the following bag class
likelihood model:

P (Yb|Fb) =
1

1 + exp(−Yb maxi∈b fi)
. (4)

Also, note that (4) in the limiting case where all the
bags become singletons (i.e., classical supervised clas-
sification), is equivalent to the standard Gaussian pro-
cess classification model with the sigmoid link1.

When incorporating the likelihood model (4) into the
GP framework, one bottleneck is that we have non-
differentiable formulas due to the max function. We
approximate it by the soft-max2: max(z1, . . . , zm) ≈
log
∑
i exp(zi). This leads to the approximated bag

class likelihood model:

P (Yb|Fb) ≈ 1

1 + exp(−Yb log
∑
i∈b e

fi)

=
1

1 + (
∑
i∈b e

fi)−Yb
. (5)

Whereas the soft-max is often a good approximation
for the max function, it should be noted that unlike
in standard GP classification with the sigmoid link,
the negative log-likelihood − logP (Yb|Fb) = log(1 +
(
∑
i∈b e

fi)−Yb) is not a convex function of Fb for
Yb = +1 (although it is convex for Yb = −1). This cor-
responds to a non-convex optimization in the approx-
imated GP posterior computation and learning when
the Laplace or variational approximation methods are

1So, it is also possible to have a probit version of (4),
namely P (Yb|fb) = Φ(Yb maxi∈b fi), where Φ(·) is the cu-
mulative normal function.

2It is well known that the soft-max provides relatively
tight bounds for the max, maxm

i=1 zi ≤ log
∑m

i=1 exp(zi) ≤
maxm

i=1 zi + logm. Another nice property is that the soft-
max is a convex function.
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adopted. However, using the (scaled) conjugate gra-
dient search with different starting iterates, one can
typically obtain a well-approximated posterior with a
meaningful set of hyperparameters.

Before we proceed further to the details of inference
and learning, we briefly discuss the benefits of the
GPMIL compared to the existing MIL methods. As
mentioned earlier, the GPMIL directly models the
bag class distribution without suboptimally introduc-
ing instance-level models such as the Noisy-OR model
of (Viola et al., 2005). Also, framed in the GP frame-
work, the posterior estimation and the hyperparame-
ter learning can be accomplished by simple gradient
search with similar complexity as the standard GP
classification, while enabling a probabilistic interpre-
tation (e.g., uncertainty in prediction). Moreover, GP-
MIL have a principled way to learn the kernel hyperpa-
rameters under the Bayesian formalism, which is not
properly handled by other kernel-based MIL methods.

2.1. Posterior, Evidence, and Prediction

From the latent-to-output likelihood model (5), our
generative GPMIL model can be depicted in a graph-
ical representation as Fig. 1. Following the GP frame-
work, all the latent variables F = {F1, . . . ,FB} =
{fb,i}b,i are dependent on one another as well as on
all the training input points X = {X1, . . . ,XB} =
{xb,i}b,i, conforming to the following distribution:

P (F|X) = N (F; 0,K), (6)

Similarly, for a new test bag X∗ = {x∗,1, . . . ,x∗,n∗}
together with the corresponding latent variables F∗ =
{f∗,1, . . . , f∗,n∗}, we have a joint Gaussian prior on the
concatenated latent variables, {F∗,F}, from which the
predictive distribution on F∗ can be derived as (by
conditional Gaussian):

P (F∗|X∗,F,X) = N
(
F∗; k(X∗)

>K−1F,

k(X∗,X∗)− k(X∗)
>K−1k(X∗)

)
, (7)

where k(X∗) is the (n × n∗) train-test kernel matrix
whose ij-th element is k(xi,x∗,j), and k(X∗,X∗) is the
(n∗ × n∗) test-test kernel matrix whose ij-th element
is k(x∗,i,x∗,j).

Under the usual i.i.d. assumption, the entire likelihood
P (Y = [Y1, . . . , YB ]|F) is the product of the individual
bag likelihoods P (Yb|Fb) in (5). That is,

P (Y|F) =

B∏
b=1

P (Yb|Fb) ≈
B∏
b=1

1

1 + (
∑
i∈b e

fi)−Yb
.

(8)
Equipped with (6) and (8), one can compute the
posterior distribution P (F|Y,X) ∝ P (F|X)P (Y|F)

and the evidence (or the data likelihood) P (Y|X) =∫
F
P (F|X)P (Y|F), where the GP learning maximizes

the evidence w.r.t. the kernel hyperparameters (also
known as the empirical Bayes). Similar to the GP
classification cases, the non-Gaussian likelihood term
(8) causes intractability in the exact computation, and
we resort to some approximation. Here we focus on the
Laplace approximation3.

The Laplace approximation essentially replaces the
product P (Y|F)P (F|X) by a Gaussian with the mean
equal to the mode of the product, and the covariance
equal to the inverse Hessian of the product evaluated
at the mode. For this purpose, we rewrite

P (Y|F)P (F|X) = exp(−S(F)) · |K|−1/2 · (2π)−n/2,

where S(F) =
∑B
b=1 l(Yb,Fb) + 1

2F
>K−1F, (9)

l(Yb,Fb) = − logP (Yb|Fb) ≈ log
(

1 + (
∑
i∈b e

fi)−Yb

)
.

We first find the minimum of S(F), namely

F̂ = arg min
F
S(F), (10)

where the optimum is denoted by F̂. Solving (10) can
be done by gradient search as usual. Unlike the stan-
dard GP classification, however, notice that S(F) is a
non-convex function of F since the Hessian of S(F),
H+K−1, is generally not positive definite, where H is
the block diagonal matrix whose b-th block has the ij-

th entry [Hb]ij = ∂2l(Yb,Fb)
∂fi∂fj

for i, j ∈ b. Although this

may hinder obtaining the global minimum easily, S(F)
is bounded below by 0 (from (10)), and the (scaled)
conjugate or Newton-type gradient search with differ-
ent initial iterates can yield a reliable solution.

We then approximate S(F) by a quadratic function

using its Hessian evaluated at F̂, namely H(F̂)+K−1.
Yet, in order to enforce a convex quadratic form, we
need to address the case that H + K−1 is not posi-
tive definite, which although very rare, could happen
as gradient search only discovers a point close (not
exactly the same) to local minima. We approximate
it to the closest positive definite matrix by project-
ing it onto the PSD cone. More specifically, we let
Q ≈ H+K−1, with Q =

∑
i max(λi, ε)viv

>
i , where λ

and v are the eigenvalues/vectors of H+K−1, and ε is
a small positive constant. In this way Q is a positive

3Although it is feasible, here we do not take the varia-
tional approximation into consideration for simplicity. Un-
like the standard GP classification, it is difficult to perform.
For example, the Expectation Propagation (EP) approxi-
mation since moment matching, the core step in EP that
minimizes the KL divergence between the marginal poste-
riors, requires integration over the likelihood function in
(5), which requires further elaboration.
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definite matrix closest to the Hessian with precision
ε. Letting Q̂ be Q evaluated at F̂, we approximate
S(F) by the following quadratic function (i.e., using
the Taylor expansion)

S(F) ≈ S(F̂) +
1

2
(F− F̂)>Q̂(F− F̂), (11)

which leads to Gaussian approximation for P (F|Y,X)

P (F|Y,X) ≈ N (F; F̂, Q̂−1). (12)

The data likelihood (i.e., evidence) immediately fol-
lows from the similar approximation,

P (Y|X,θ) ≈ exp(−S(F̂))|Q̂|−1/2|K|−1/2. (13)

We then maximize (13) w.r.t. the kernel parameters θ
by gradient search. The overall learning algorithm is
depicted in Algorithm 1.

Algorithm 1 GPMIL Learning

Input: Initial guess θ, the tolerance parameter τ .
Output: Learned hyperparameters θ.
(a) Find F̂ from (10) for current θ.

(b) Compute Q̂ using the PSD cone projection.
(c) Maximize (13) w.r.t. θ.
if ||θ − θold|| > τ then

Go to (a).
else

Return θ.
end if

Given a new test bag X∗ = {x∗,1, . . . ,x∗,n∗}, it is
easy to derive the predictive distribution for the corre-
sponding latent variables F∗ = {f∗,1, . . . , f∗,n∗}. Us-
ing the Gaussian approximated posterior (12) together
with the conditional Gaussian prior (7), we have:

P (F∗|X∗,Y,X) = N
(
F∗; k(X∗)

>K−1F̂,

k(X∗,X∗) + k(X∗)
>(K−1Q̂−1K−1 −K−1)k(X∗)

)
.

Finally, the predictive distribution for the test bag
class label Y∗ can be obtained by marginalizing out
F∗, namely

P (Y∗|X∗,Y,X) =

∫
F∗

P (F∗|X∗,Y,X)P (Y∗|F∗).

(14)
The integration in (14) generally needs further approx-
imation. If one is only interested in the mean predic-
tion (i.e., the predicted class label), it is possible to
approximate P (F∗|X∗,Y,X) by a delta function at

its mean (mode), µ := k(X∗)
>K−1F̂, which yields

the test prediction:

Class(Y∗) ≈ sign

(
1

1 + (
∑
i∈∗ e

µi)−1
− 0.5

)
. (15)

3. GPMIL using Witness Variables

Although the approach in Sec. 2 is reasonable, one
drawback is that the target function we approximate
(i.e., S(F)) is not in general a convex function (due
to the non-convexity of − logP (Yb|Fb)), where we per-
form the PSD projection step to find the closest convex
function in the Laplace approximation. This section
addresses this issue in a different way by introducing
the so-called witness latent variables which indicate
the most probably positive instances in the bags.

For each bag b, we introduce the witness indicator ran-
dom variables Pb = [pb,1, . . . , pb,nb

]>, where pb,i repre-
sents the probability that xb,i is considered as a wit-
ness of the bag b. We call an instance a witness if
it contributes to the likelihood P (Yb|Fb). Note that∑
i pb,i = 1, and pb,i ≥ 0 for all i ∈ b. In the MIL for-

malism, as P (Yb|Fb) is solely dependent on the most
likely positive instance, it is ideal to put all the prob-
ability mass to a single instance as:

pb,i =

{
1 if i = arg maxj fb,j
0 otherwise

(16)

Alternatively, it is also possible to define a soft witness
assignment4 using a sigmoid function:

pb,i =
exp(λfb,i)∑
j∈b exp(λfb,j)

, (17)

where λ is the parameter that controls the smoothness
of the assignment.

Once Pb is given, we then define the likelihood as a
sigmoid of the weighted sum of fi’s with weights pi’s:

P (Yb|Fb,Pb) =
1

1 + exp(−Yb
∑
i pb,ifb,i)

. (18)

The aim here is to replace the max or the soft-max
function in the original derivation by the expectation,∑
i pb,ifb,i, a linear function of Fb given the witness

assignment Pb. Notice that given Pb, the negative
log-likelihood of (18) is a convex function of Fb.

In the full Bayesian treatment, one marginalizes out
Pb, namely P (Yb|Fb) =

∫
Pb
P (Yb|Fb,Pb)P (Pb|Fb),

where P (Pb|Fb) is a Dirac’s delta function with the
point support given as (16) or (17). However, this
simply leads to the very non-convexity raised by the
original version of our GPMIL. Rather, we pursue the

4This has a close relation to (Gehler & Chapelle,
2007)’s deterministic annealing approach to SVM. Simi-
lar to (Gehler & Chapelle, 2007), one can also consider a
scheduled annealing, where the inverse of the smoothness
parameter λ in (17) serves as the annealing temperature.
See Sec. 3.1 for further details.
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coordinate-wise convex optimization by separating the
process of approximating P (Yb|Fb) into two individual
steps: (i) find the witness indicator Pb from Fb using
(16) or (17), and (ii) (while fixing Pb) represent the
likelihood as the sigmoid of the weighted sum (18), and
perform posterior approximation. We alternate these
two steps until convergence. Note that in this setting
the Laplace approximation becomes quite similar to
that of the standard GP classification, having the ad-
ditional alternating optimization as an inner loop.

3.1. Deterministic Annealing

When we adopt the soft witness assignment in the
above formulation, it is easy to see that (17) is very
similar to the probability assignment in the determin-
istic annealing (i.e., Eq. (11) of (Gehler & Chapelle,
2007)) while the smoothness parameter λ now acts
as the inverse temperature in the annealing schedule.
Motivated by this, we can have an annealed version of
posterior approximation. More specifically, it initially
begins with a small λ (large temperature) correspond-
ing to a uniform-like Pb, and repeats the following:
perform a posterior approximation starting from the
optimum Fb in the previous stage to get a new Fb,
then increase λ to reduce the entropy of Pb.

4. Empirical Results

We conducted experimental evaluations in both syn-
thetic data and real-world benchmark datasets in-
cluding the traditional MUSK datasets (Dietterich
et al., 1997), image annotation and text classification
datasets. We ran two different approximation schemes
for our GPMIL, which are denoted by: (a) SOFT-MAX =
the soft-max approximation with the PSD projection
described in Sec. 2, and (b) WDA = the approximation
using the witness indicator variables with the deter-
ministic annealing optimization discussed in Sec. 3. In
the SOFT-MAX, the GP inference/learning optimization
is done by (scaled) conjugate gradient search with dif-
ferent starting iterates. In the WDA, we started with
a large temperature (e.g., λ = 1e − 1), and decreased
it in log-scale (e.g., λ ← 10 · λ) until there is no sig-
nificant change in the quantities to be estimated. For
both methods, we first estimated the kernel hyperpa-
rameters by empirical Bayes (i.e., maximizing the ev-
idence likelihood) and used the learned hyperparam-
eters for the test prediction. The GPMIL is imple-
mented in Matlab based on the publicly available GP
codes from (Rasmussen & Williams, 2006).
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Figure 2. Visualization of the synthetic 1D dataset. It de-
picts the instance-level input and output samples, where
the bag formation is done by randomly grouping the in-
stances. See text for details.

4.1. Synthetic Data

This section tested the effectiveness of GPMIL in ac-
curately estimating the kernel hyperparameters from
data. We constructed the synthetic 1D dataset gen-
erated by a GP prior with random formation of the
bags. More specifically, we first sampled the input
data points x uniformly from the real line [−30, 30].
We generated 1000 samples and sampled the latent
variables f from the GP prior distribution with the
covariance matrix set equal to the (1000 × 1000) ker-
nel matrix from the input samples. The kernel had a
particular form, the RBF kernel k(x,x′) = exp(−||x−
x′||2/2σ2), where the hyperparameter is set to σ = 3.0.
Note that we assumed that the RBF kernel form is
known to the algorithm, and the goal is to estimate
σ as accurately as possible. The actual instance-level
class output y is determined as y = sign(f). Fig. 2 de-
picts the instance-level input and output samples (i.e.,
f (and y) vs. x).

To form the bags, we did the following procedure. For
each bag b, we randomly assigned its bag label Yb uni-
formly from {+1,−1}. The number of instances nb
was also chosen uniformly at random from {1, . . . , 10}.
When Yb = −1, we randomly selected nb instances
from the negative instances of the 1000-sample pool.
On the other hand, when Yb = +1, we flipped the 10-
side fair coin to decide the positive instance portion
pp ∈ {0.1, 0.2, . . . , 1.0}, with which the bag is con-
structed from dpp × nbe instances selected randomly
from the positive instances and the rest (also ran-
domly) from the negative instance pool. We generated
100 bags and randomly repeated this process 20 times.

We then performed the GPMIL hyperparameter learn-
ing starting from the initial guess σ = 1.0. We com-
puted the average σ estimated for 20 trials. The results
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were: 3.2038± 0.2700 for the SOFT-MAX approach,
and 3.0513± 0.2149 for the WDA approach, which are
very close to the true σ = 3.0. This demonstrates a
unique benefit of our GPMIL algorithm, namely that
we can estimate the kernel parameters precisely in a
principled manner, which is hard to achieve with most
existing MIL approaches that rely on heuristic grid
search on the hyperparameter space.

4.2. Benchmark Datasets

4.2.1. The MUSK Datasets

The MUSK datasets (Dietterich et al., 1997) have
widely served as the benchmark dataset for the MIL
algorithms. The datasets contain the description of
molecules using multiple low-energy conformations.
The feature vector x is 166-dimensional. There are two
different types of bag formation denoted by MUSK1
and MUSK2, where the MUSK1 has approximately
nb = 6 conformations (instances) per bag, while the
MUSK2 takes nb = 60 instances per bag on average.
For comparison with existing MIL algorithms, we fol-
lowed an experimental setting similar to that of (An-
drews et al., 2003; Gehler & Chapelle, 2007), where we
conducted 10-fold cross validation. This is further re-
peated 5 times with different (random) partitions, and
the average errors are reported. We used the RBF ker-
nel. The test errors are shown in Table 1. Our GPMIL
with SOFT-MAX and WDA are depicted with and without
parentheses, respectively.

In the table, our approaches are also compared with:
EMDD=(Zhang et al., 2002), MICA=(Mangasarian &
Wild, 2008), and MI-SVM/mi-SVM=(Andrews et al.,
2003) as described in the introduction. In addi-
tion, we compared GPMIL with the recent approach
of (Gehler & Chapelle, 2007) that extend several differ-
ent SVM variants by deterministic annealing optimiza-
tion. They include: AL-SVM = Extension of mi-SVM,
AW-SVM = Extension of witnesses-identifying SVMs
such as MI-SVM and MICA, and ALP-SVM = AL-
SVM with the additional constraint on the expected
number of positive instances per bag.

Our GPMIL algorithms, for both approximation
strategies WDA and SOFT-MAX, exhibit superior classifi-
cation performance to existing approaches for the two
MUSK datasets. One exception is the MICA where the
reported error is the smallest on the MUSK2 dataset.
This can be mainly due to the use of L1-regularizer in
the MICA that yields a sparse solution suitable for
the large-scale MUSK2 dataset. As is also alluded
in (Gehler & Chapelle, 2007), it may not be directly
comparable with the other methods.

4.2.2. Image Annotation

This section reports experiments on image annotation
datasets devised by (Andrews et al., 2003) using the
COREL image database. Each image is treated as
a bag comprised of the segments (instances) that are
represented as feature vectors of color, text, and shape
descriptors. Three datasets were formed for the ob-
ject categories: tiger, elephant, and fox, regarding im-
ages containing the object as positive, and the rest as
negative. There were 100/100 positive/negative bags,
each of which contains 2 ∼ 13 instances. Similar
to (Andrews et al., 2003; Gehler & Chapelle, 2007),
we conducted 10-fold cross validation. This is further
repeated 5 times with different (random) partitions.
We employed the RBF kernel. Table 1 shows the test
errors. The proposed GPMIL algorithms achieved sig-
nificantly higher accuracy than the best competing ap-
proaches most of the time. Comparing the two approx-
imation methods for GPMIL, WDA often outperformed
SOFT-MAX, implying that the approximation based on
witness variables followed by a proper deterministic
annealing schedule can be more effective than the soft-
max approximation with the spectral convexification.

4.2.3. Text Classification

We also demonstrated the effectiveness of the GPMIL
algorithm on the text categorization task. We used
the MIL datasets provided by (Andrews et al., 2003)
obtained from the well-known TREC9 database. The
original data is composed of 54000 MEDLINE docu-
ments annotated with 4903 subject terms, each defin-
ing a binary concept. Each document (bag) is decom-
posed into passages (instances) of overlapping win-
dows of 50 or fewer words. Similar to the settings
in (Andrews et al., 2003), a smaller subset is used,
which is comprised of 7 concepts (binary classification
problems), each of which has roughly the same num-
ber (about 1600) of positive/negative instances from
200/200 positive/negative bags.

In Table 2 we report the average test errors of the
GPMIL with the WDA approach, together with those of
competing models from (Andrews et al., 2003). For
MI-SVM and mi-SVM, only the linear SVM errors
are shown since the linear kernel outperforms polyno-
mial/RBF kernels most of the time. In the GPMIL we
also employed the linear kernel. We see that for a large
portion of the problem sets, our GPMIL exhibits a sig-
nificant improvement over the methods provided in the
original paper (EM-DD, mi-SVM, and MI-SVM).
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Table 1. Test errors on MUSK and Image Annotation Datasets. For GPMIL, we report the errors of WDA (without
parentheses) and SOFT-MAX (with parentheses). In AW-SVM and AL-SVM, for the two annealing schedules suggested
by (Gehler & Chapelle, 2007), we only show the ones with smaller errors. Boldfaced numbers indicate the best results.

Dataset GPMIL EMDD MI-SVM MICA AW-SVM mi-SVM AL-SVM ALP-SVM

MUSK1 10.53 (11.48) 15.2 22.1 15.6 14.3 12.6 14.3 13.7
MUSK2 12.75 (12.13) 15.1 15.7 9.5 16.2 16.4 13.8 13.8
TIGER 12.63 (12.86) 27.9 16.0 18.0 17.0 21.6 21.5 14.0

ELEPHANT 16.20 (17.13) 21.7 18.6 17.5 18.0 17.8 20.5 16.5
FOX 34.25 (36.80) 43.9 42.2 38.0 36.5 41.8 36.5 34.0

Table 2. Test errors on text classification. Boldfaced num-
bers indicate the best results.

Dataset GPMIL EMDD MI-SVM mi-SVM

TST1 5.57 14.2 6.1 6.4
TST2 14.67 16.0 15.5 21.8
TST3 13.88 31.0 17.8 13.0
TST4 14.71 19.5 17.6 17.2
TST7 19.69 24.6 22.0 18.7
TST9 29.20 34.5 39.8 32.5
TST10 19.58 21.5 20.5 20.4

5. Conclusion

This paper proposes GPMIL, a new model that allows
incorporating bag class likelihood models into the GP
framework, yielding nonparametric probabilistic mod-
els that can capture the underlying generative process
of MIL. Using GPMIL, the kernel hyperparameters can
be learned in a principled manner, thus avoiding grid
search and being able to exploit a variety of kernel fam-
ilies with complex forms. To address the intractabil-
ity of exact GP inference and learning, we have sug-
gested several approximation schemes including soft-
max with a PSD projection and the witness latent
variables that can be optimized by deterministic an-
nealing. For many benchmark MIL datasets, we have
demonstrated that the proposed methods can yield su-
perior prediction performance than existing state-of-
the-art approaches. In our future work, we will con-
sider different approximation algorithms to further im-
prove both accuracy and computational efficiency.
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