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Visual Learning
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Abstract

Subspace clustering and feature extraction are two of the most commonly used unsupervised

learning techniques in computer vision and pattern recognition. State-of-the-art techniques for sub-

space clustering make use of recent advances in sparsity and rank minimization. However, existing

techniques are computationally expensive and may result in degenerate solutions that degrade clus-

tering performance in the case of insufficient data sampling. To partially solve these problems,

and inspired by existing work on matrix factorization, this paper proposes fixed-rank representation

(FRR) as a unified framework for unsupervised visual learning. FRR is able to reveal the structure

of multiple subspaces in closed-form when the data is noiseless. Furthermore, we prove that under

some suitable conditions, even with insufficient observations, FRR can still reveal the true subspace

memberships. To achieve robustness to outliers and noise, a sparse regularizer is introduced into the

FRR framework. Beyond subspace clustering, FRR can be used for unsupervised feature extraction.

As a non-trivial byproduct, a fast numerical solver is developed for FRR. Experimental results on

both synthetic data and real applications validate our theoretical analysis and demonstrate the benefits

of FRR for unsupervised visual learning.

Index Terms

Low-Rank Representation, Matrix Factorization, Motion Segmentation, Feature Extraction.

I. INTRODUCTION

Clustering and embedding are two of the most important techniques for visual data analysis. In

the last decade, inspired by the success of compressive sensing, there has been a growing interest in
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incorporating sparsity to visual learning, such as image/video processing [1], object classification [2],

[3] and motion segmentation [4]. Early studies [5], [2] usually consider the 1D sparsity (i.e., the

nonzero entries of a vector, also known as the l0 norm) in their models. Recently, there has been a

surge of methods [1], [6], [7] which also consider the rank of a matrix as a 2D sparsity measure.

However, it is difficult to directly solve these models due to the discrete nature of the l0 norm and

the rank function. A common strategy to alleviate this problem has been to use the l1 norm and the

nuclear norm [8] as the convex surrogates of the l0 norm and the rank function, respectively.

An important problem in unsupervised learning of visual data is subspace clustering. Recent

advances in subspace clustering make use of sparsity-based techniques. For example, sparse subspace

clustering (SSC) [5], [9], [10] uses the 1D sparsest representation vectors produced by l1 norm min-

imization to define the affinity matrix of an undirected graph. Then subspace clustering is performed

by spectral clustering techniques, such as normalized cut (NCut) [11]. However, as SSC computes the

sparsest representation of each points individually, there is no global structural constraint on the affinity

matrix. This characteristic can degrade the clustering performance when data is grossly corrupted.

Moreover, according to the theoretical work of [12], the within subspace connectivity assumption for

SSC holds only for 2- and 3-dimensional subspaces. So SSC may probably over-segment subspaces

when the dimensions are higher than 3.

Low-rank representation (LRR) [6], [7], [13] is another recently proposed sparsity-based subspace

clustering model. The intuition behind LRR is to learn a low-rank representation of the data. The

work by [14] shows that LRR is intrinsically equivalent to the shape interaction matrix (SIM) [15] in

absence of noise. In this case, LRR can reveal the true clustering when the subspaces are independent

and the data sampling is sufficient1. However, LRR suffers from some limitations as well. First, the

nuclear norm minimization in LRR typically requires to calculate the singular value decomposition

(SVD) at each iteration, which becomes computationally impractical as the scale of the problem grows.

By combining a linearized version of alternating direction method (ADM) [17] with an acceleration

technique for SVD computation, the work in [18] proposed a fast solver, which significantly improves

the speed for solving LRR. However, the SVD computation still cannot be completely avoided.

Second, and more importantly, if the observations are insufficient, LRR (also SSC) may result in a

degenerate solution that significantly degrades the clustering performance. The work in [16] introduces

“hidden effects” to overcome this drawback. However, it is unclear whether such “hidden effects” can

recover the multiple subspace structure for clustering. Moreover, introducing latent variables makes

1The subspaces are independent if and only if the dimension of their direct sum is equal to the sum of their dimensions [14].

For each subspace, the data sampling is sufficient if and only if the rank of the data matrix is equal to the dimension of

the subspace [16].
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the problem more complex and hard to optimize.

The insufficient data sampling problem in SSC and LRR is similar in spirit to the small sample size

problem, that is common in some subspace learning methods, such as linear discriminant analysis [19]

and canonical correlation analysis [20]. In these methods, if the number of samples is smaller than

the dimension of the features, the covariance matrices are rank deficient. Three are the common

approaches to solve this problem [21]: dimensionality reduction, regularization and factorization (i.e.,

explicitly parameterize the projection matrix as the product of low-rank matrices). In this paper, we

incorporate the factorization idea into representation learning and propose fixed-rank representation

(FRR) to partially solve the problems in existing unsupervised visual learning models. FRR has three

main benefits:

• Unlike SSC and LRR, which use the sparsest and lowest rank representations, FRR explicitly

parameterizes the representation matrix as the product of two low-rank matrices. When there is

no noise and the data sampling is sufficient, we prove that the FRR solution is also the optimal

solution to LRR. In this case, FRR can reveal the multiple subspace structure. Furthermore,

we prove that under some suitable conditions, even when the data sampling is insufficient, the

memberships of samples to each subspace still can be identified by FRR. A sparse regularizer

is introduced to FRR to model both small noises and gross outliers, which provides robustness

to FRR in real applications.

• The most expensive computational component in LRR is to perform SVD at each iteration.

Even with some acceleration techniques, the scalability of the nuclear norm minimization is still

limited by the computational complexity of SVD. In contrast, FRR avoids SVD computation

and can be efficiently applied to large-scale problems.

• FRR can also be extended for unsupervised feature extraction. By considering a transposed

version of FRR (TFRR), we show that FRR is related to existing feature extraction methods,

such as principal component analysis (PCA) [22], [23]. Indeed, our analysis provides a unified

framework to understand single subspace feature extraction and multiple subspace clustering by

analyzing the column and row spaces of the data.
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II. A REVIEW OF PREVIOUS WORK

Given a data set2 X = [X1,X2, · · · ,Xk] ∈ Rd×n drawn from a union of k subspaces {Ci}ki=1,

where Xi is a collection of ni data points sampled from the subspace Ci with an unknown dimension

dCi
, the goal of subspace clustering is to cluster data points into their respective subspaces. This

section provides a review of SSC and LRR for solving this problem. To clearly understand the

mechanism of these methods, we first consider the case when the data is noise-free. From now on,

we always write X = UXΣXV
T
X and rX as the compact SVD and the rank of X, respectively.

A. Sparse Subspace Clustering (SSC)

SSC [5], [9], [10] is based on the idea that each data point in the subspace Ci should be represented

as a linear combination of other points that are also in Ci. Using this intuition, SSC finds the sparsest

representation coefficients Z = [[Z]1, [Z]2, · · · , [Z]n] by considering the sequence of optimization

problems

min
[Z]i
‖[Z]i‖1, s.t. [X]i = X[Z]i, [Z]ii = 0, (1)

where i = 1, 2, · · · , n. Then one can use Z to define the affinity matrix of an undirected graph as

(|Z| + |ZT |) and perform NCut on this graph, where |Z| denotes a matrix whose entries are the

absolute values of Z. The SSC model can also be rewritten in matrix form as

min
Z
‖Z‖1, s.t. X = XZ, [Z]ii = 0. (2)

Note that both l1 norm minimization models (1) and (2) can only be solved numerically.

B. Low-Rank Representation (LRR)

By extending the sparsity measure from 1D to 2D for the representation, LRR [6], [7], [13] proposes

a low-rank based criterion for subspace clustering. By utilizing the nuclear norm as a surrogate for

the rank function, LRR solves the following nuclear norm minimization problem

min
Z
‖Z‖∗, s.t. X = XZ. (3)

Unlike SSC, which can only be solved numerically, VXV
T
X (also known as SIM [15]), which has

a block-diagonal structure, is the closed-form solution to (3) [14]. Although [14] has proved this, in

the following section, we will provide a simpler derivation, that provides new insights into LRR.

2Bold capital letters (e.g., M) denote matrices. The range and the null spaces of M are defined as R(M) := {a|∃b,a =

Mb} and N (M) := {a|Ma = 0}, respectively. [M]ij and [M]i denote the (i, j)-th entry and the i-th column of M,

respectively. M† denotes the Moore-Penrose pseudoinverse of M. The block-diagonal matrix formed by a collection of

matrices M1,M2, ...,Mk is denoted by diag(M1,M2, ...,Mk). 1n is the all-one column vector of length n. In is the

n × n identity matrix. 〈·, ·〉 denotes the inner product of two matrices. A variety of norms on matrix and vector will be

used. ‖ · ‖F is the Frobenius norm, ‖ · ‖∗ is the nuclear norm [8], ‖ · ‖2,1 is the l2,1 norm [24], ‖ · ‖ is the spectral norm,

‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ are the l1, l2 and l∞ norms, respectively.
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III. FIXED-RANK REPRESENTATION

In this section, we propose a new model, named fixed-rank representation (FRR), for subspace

clustering. We start with the following analysis on LRR.

A. Motivation

To better understand the mechanism of LRR and illustrate our motivation, we show that VXV
T
X ∈

R(XT ) is the optimal solution to LRR in a simple way3. By the identity X = XX†X and the

constraint in (3), we have X = XZ = XX†XZ = XX†X. Thus X†X = VXV
T
X is a feasible

solution to (3). So the general form of the solution is Z = VXV
T
X + Zn, where Zn ∈ N (X). As

R(XT ) ⊥ N (X), we have VT
XZn = 0. This together with the duality definition of nuclear norm [8]

leads the following inequality

‖Z‖∗ = max
‖Y‖≤1

〈Z,Y〉 ≥ 〈Z,VXV
T
X〉 = rX = ‖VXV

T
X‖∗.

This concludes that VXV
T
X is the minimizer to (3).

The first observation from the prevous analysis is that LRR can successfully remove the effects

from N (X) to obtain a block-diagonal matrix when the data sampling is sufficient. However, it is also

observed that the “lowest rank” representation in LRR is actually the largest rank matrix within the

row space of X, namely the rank of this representation is always equal to the dimension of the row

space. Therefore, the lack of observations for each subspace may significantly degrade the clustering

performance. For example, due to insufficient data sampling, the dimension of the row space may

be equal to the number of samples (i.e., rX = n ≤ d). In this case, the optimal solution to (3) may

reduce to an identity matrix and thus LRR may fail. See Fig. 1 as an example.

An obvious question is whether we can find a lower rank representation in the row space of the

data set to exactly reveal the subspace memberships for clustering, even when the data sampling is

insufficient. In the following subsection, we give a positive answer to this question.

B. The Basic Model

The key idea of FRR is to minimize the Frobenius norm of the representation Z instead of the

nuclear norm as in LRR. FRR simultaneously computes a fixed lower rank representation Z̃ (hereafter

we write rank(Z̃) = m). That is, we jointly optimize Z and Z̃ as

min
Z,Z̃
‖Z− Z̃‖2F , s.t. X = XZ, rank(Z̃) = m. (4)

3Note that here we only analyze the optimality of VXVT
X to (3), not its uniqueness.
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Obviously, Z̃ can be expressed, non-uniquely, as a matrix product Z̃ = LR, where L ∈ Rn×m and

R ∈ Rm×n. Replacing Z̃ by LR, we arrive at our basic FRR model

min
Z,L,R

‖Z− LR‖2F , s.t. X = XZ. (5)

In the following sections, we will analyze the problem (5), show properties of the solution to (5),

and extend it for real applications.

C. Analysis on the Basic Model

At first sight, the factorization of Z̃ leads to a non-convex optimization problem which may prevent

one from getting a global solution. The difficulty results from the fact that the minimizer is non-

unique. Fortunately, in the following theorem, we prove that one can always obtain a globally optimal

solution to (5) in closed-form.

Theorem 1: Let [VX ]1:m = [[VX ]1, [VX ]2, · · · , [VX ]m]. Then for any fixed m ≤ rX , (Z∗,L∗,R∗) :=

(VXV
T
X , [VX ]1:m, [VX ]T1:m) is a globally optimal solution to (5) and the minimum objective function

value is (rX −m).

The proof of this theorem is based on the following lemma.

Lemma 2: (Courant-Fischer Minimax Theorem [25]) For any symmetric matrix A ∈ Rn×n, we

have that

λi(A) = max
dim(S)=i

min
0 6=y∈S

yTAy/yTy, for i = 1, 2, ..., n,

where S ⊂ Rn is some subspace and λi(A) is the i-th largest eigenvalue of A.

Proof: First, by the well known Eckart-Young theorem [26], given Z, we have

min
L,R
‖Z− LR‖2F =

d∑
i=m+1

σ2i (Z), (6)

where σi(Z) is the i-th largest singular value of Z. Now we prove that

if X = XZ then σrX (Z) ≥ 1. (7)

By X = XZ, we have that rank(Z) ≥ rX . Then (6) and (7) imply that the minimum objective

function value is no less than rX −m. Indeed, by the compact SVD of X and X = XZ, we have

VT
X = VT

XZ, (8)

By Lemma 2, σi(Z) = max
dim(S)=i

min
06=y∈S

‖ZTy‖2/‖y‖2, where ‖ · ‖2 is the l2 norm of a vector. So by

choosing S = R(VX) and utilizing (8),

σrX (Z) ≥ min
0 6=y∈R(VX)

‖ZTy‖2/‖y‖2

= min
b6=0
‖ZTVXb‖2/‖VXb‖2

= min
b6=0
‖VXb‖2/‖VXb‖2 = 1.

(9)

DRAFT April 18, 2012



LIU et al.: FIXED-RANK REPRESENTATION FOR UNSUPERVISED VISUAL LEARNING 7

Next, when Z = VXV
T
X , it can be easily checked that the objective function value is (rX−m). Again,

by Eckart-Young theorem, LR = [VX ]1:m[VX ]T1:m. Thus we have (VXV
T
X , [VX ]1:m, [VX ]T1:m) is a

globally optimal solution to (5), thereby completing the proof of the theorem.

Based on Theorem 1, we can derive the following corollary to illustrate the structure of the optimal

solution to (5).

Corollary 3: Under the assumption that subspaces are independent and data X is clean, there exists

a globally optimal solution (Z∗,L∗,R∗) to problem (5) with the following structure:

Z∗ = diag(Z1,Z2, ...,Zk), (10)

where Zi is an ni × ni matrix with rank(Zi) = dCi
and

L∗R∗ ∈ R(Z∗) = R(XT ). (11)

The proof of this corollary is based on the following lemma.

Lemma 4: [15] Let X = UXΣXV
T
X be the compact SVD. Under the same assumption in Corol-

lary 3, VXV
T
X is a block diagonal matrix that has exactly k blocks. Moreover, the i-th block on its

diagonal is an ni × ni matrix with rank dCi
.

Proof: By the proof of Theorem 1, we have that Z∗ = VXV
T
X is a global optimal solution to (5)

and any global optimal L∗ and R∗ are in the range space R(Z∗). So we have that L∗R∗ ∈ R(Z∗) =

R(XT ). By Lemma 4, we achieve the block diagonal structure (10) for Z∗, which concludes the

proof.

However, such Z∗ suffers from the same limitation of LRR. Namely, when the data sampling is

insufficient, Z∗ will probably degenerate and thus the clustering may fail.

Fortunately, as shown in (11), L∗R∗ can still be spanned by the row space of X. This inspires us

to consider this lower rank representation for subspace clustering.

Corollary 5: Assuming that the columns of Z∗ are normalized (i.e. 1TnZ
∗ = 1Tn ) and fix m = k,

then there exists globally optimal L∗ and R∗ to problem (5) such that

L∗R∗ = diag(n11n1
1Tn1

, n21n2
1Tn2

, ..., nk1nk
1Tnk

). (12)

Remark: Corollary 5 does not guarantee that an arbitrary rank-k optimal solution has the block-

diagonal structure (12) due to the non-unique of the minimizer (L∗,R∗). However, in our experiments,

we have observed that empirically choosing the first k columns of VX works well on the tested data

(e.g., Fig. 1).

Proof: By Corollary 3 and the normalization assumption, Z∗ = diag(Z∗1,Z
∗
2, ...,Z

∗
k), where Z∗i

is an ni × ni for subspace Ci and 1ni
is an eigenvector of Z∗i with eigenvalue 1. Thus there exists a

basis H = [h1,h2, ...,hk], each vector of which with the form hi = [0,1Tni
,0]T is eigenvector of Z

April 18, 2012 DRAFT
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with eigenvalue 1. By the Eckart-Young theorem (similar to the proof of Theorem 1), we have that

L∗ = H and R∗ = HT are global optimal solutions to (5), which directly leads (12).

In principle, the normalization of Z∗ could be considered as a strong assumption, hence it cannot

always be guaranteed in real situations. Therefore, we explicitly enforce each column of Z to sum

to one

min
Z,L,R

‖Z− LR‖2F , s.t. X = XZ, 1TnZ = 1Tn . (13)

D. Sparse Regularization for Corruptions

In real applications, the data are often corrupted by both small noises and gross outliers. In the

following, we show how to extend problem (13) to deal with corruptions. By modeling corruptions

as a new term E, we consider the following regularized optimization problem

min
Z,L,R,E

‖Z− LR‖2F + µ‖E‖s,

s.t. X = XZ + E, 1TnZ = 1Tn ,
(14)

where the parameter µ > 0 is used to balance the effects of the two terms and ‖ · ‖s is a sparse norm

corresponding to our assumption on E. Here we adopt the l2,1 norm to characterize the corruptions

since it can successfully identify the indices of the outliers and remove small noises [27]. Algorithm 1

summarizes the whole FRR based subspace clustering framework.

Algorithm 1 FRR for Subspace Clustering
Input: Let X ∈ Rd×n be a set of data points sampled from k subspaces.

Step 1: Solve (14) to obtain (Z∗, L∗, R∗).

Step 2: Construct a graph by using (|Z∗|+ |(Z∗)T |) or (|L∗R∗|+ |(L∗R∗)T |) as the affinity matrix.

Step 3: Apply NCut to this graph to obtain the clustering.

IV. EXTENDING FRR FOR FEATURE EXTRACTION

Besides subspace clustering, the mechanism of FRR can also be applied for feature extraction.

That is, one can recover the column space of the data set by solving the following transposed FRR

(TFRR)

min
Z,L,R

‖Z− LR‖2F , s.t. X = ZX, (15)

where m ≤ rX , L ∈ Rd×m, R ∈ Rm×d and Z ∈ Rd×d. For noisy data, by using similar techniques

as in Section III-D, we introduce an explicit corruption term E into the objective function and the

constraint. Hence we obtain the robust version of TFRR for feature extraction

min
Z,L,R,E

‖Z− LR‖2F + µ‖E‖s, s.t. X = ZX + E. (16)

DRAFT April 18, 2012
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A. Relationship to Principal Component Analysis

Principal component analysis (PCA) is one of the most popular dimensionality reduction tech-

niques [22], [23]. The basic ideas behind PCA date back to Pearson in 1901 [22], and a more general

procedure was described by Hotelling [23] in 1933. There are several energy functions which lead to

subspace spanned by the principal components [21]. For instance, PCA finds the matrix P ∈ Rd×m

that minimizes:

min
P
‖X−PPTX‖2F , s.t. PTP = Im. (17)

It can be shown that P∗ = [UX ]1:m is the optimal solution to (17), where [UX ]1:m = [[UX ]1, [UX ]2, · · · , [UX ]m].

The following corollary shows that the mechanism of TFRR can also be applied to formulate PCA.

Corollary 6: For any fixed m ≤ rX , (Z∗,L∗,R∗) := (UXU
T
X , [UX ]1:m, [UX ]T1:m) is a globally

optimal solution to (15) and the minimum objective function value is (rX −m).

Proof: The proof of Theorem 1 directly leads to the above corollary.

V. OPTIMIZATION FOR FRR

In this section, we develop a fast numerical solver for FRR related models by extending the classic

alternating direction method (ADM) [17] to non-convex problems. To solve the problem (14)4, we

introduce Lagrange multipliers Λ and Π to remove the equality constraints. The resulting augmented

Lagrangian function is

LA(Z,L,R,E,Λ,Π) = ‖Z− LR‖2F + µ‖E‖2,1
+〈Λ,X−XZ−E〉+ 〈Π,1TnZ− 1T 〉

+β
2 (‖X−XZ−E‖2F + ‖1TnZ− 1n‖2F ),

(18)

where β > 0 is a penalty parameter. It is important to note that although (18) is not jointly convex for

all variables, it is convex with respect to each variable while fixing the others. This property allows

the iteration scheme to be well defined. So we minimize (18) with respect to L, R, Z, and E one at

a time while fixing the others at their latest values, and then update the Lagrange multipliers Λ and

4As other FRR related models can be solved in similar way, we do not further explore them in this section.
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Π:

L+ ← ZR† ≡ ZRT (RRT )†, (19)

R+ ← L†+Z ≡ (LT+L+)†LT+Z, (20)

Z+ ← (2In + β(XTX + 1n1
T
n ))−1B, (21)

E+ ← arg min
E

µ‖E‖2,1 +
β

2
‖C−E‖2F , (22)

Λ+ ← Λ + β(X−XZ+ −E+), (23)

Π+ ← Π + β(1TnZ+ − 1Tn ), (24)

β+ ← min(β̄, ρβ), (25)

where the subscript + denotes that the values are updated, β̄ is the upper bound of β, ρ > 1 is the step

length parameter, B = 2L+R++β(XTX−XT (E−Λ/β))+β1n1
T
n−1nΠ and C = X−XZ++Λ/β.

The subproblem (22) can be solved by Lemma 3.2 in [6]. We then reduce the computational cost for

solving (19) and (20). It follows from (20) that

L+R+ = L+(LT+L+)†LT+Z = PL+
(Z). (26)

By considering the compact SVD: R = URr
ΣRr

VT
Rr

, we have L+ = ZVRr
Σ−1Rr

UT
Rr

and ZRT =

ZVRr
ΣRr

UT
Rr

. This implies that R(L+) = R(ZRT ) = R(ZVRr
) and

L+R+ = PZRT (Z), (27)

where PZRT is the orthogonal projection into R(ZRT ). Since the objective function of (14) depends

on the product L+R+, different values of L+ and R+ are essentially equivalent as long as they give

the same product. The identity (27) shows that the inversion (RRT )† and (LT+L+)† can be saved

when the projection PZRT is computed. Specifically, one can compute PZRT = QQT , where Q is

the QR factorization of ZRT . Then we have L+R+ = QQTZ and one can derive:

L+ ← Q, (28)

R+ ← QTZ. (29)

The schemes (28) and (29) are often preferred since computing (29) by QR factorization is generally

more stable than solving the normal equations [28]. The complete algorithm is summarized in

Algorithm 2.

VI. EXPERIMENTAL RESULTS

This section compared the performance of FRR against state-of-the-art algorithms on both subspace

clustering and feature extraction. All experiments are performed on a notebook computer with an Intel

Core i7 CPU at 2.00 GHz and 6GB of memory, running Windows 7 and Matlab version 7.10.
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Algorithm 2 Solving (14) by ADM-type Algorithm
Input: Observation matrix X ∈ Rd×n, m > 0, ε1, ε2 > 0, parameters β > 0 and ρ > 1.

Initialization: Initialize Z0 ∈ Rn×n, L0 ∈ Rn×m, R0 ∈ Rm×n, E0 ∈ Rd×n, Λ0 ∈ Rd×n and

Π0 ∈ R1×n.

while not converged do

Step 1: Update (Z, L, R, E, Λ, Π) by (28), (29) and (21)–(25).

Step 2: Check the convergence conditions:

‖X−XZ+ −E+‖∞ ≤ ε1 and ‖1TnZ+ − 1Tn‖∞ ≤ ε2.

end while

Output: Z∗, L∗, R∗ and E∗.

A. Subspace Clustering

We first consider the subspace clustering problem, and compare the clustering performance and

computational speed of FRR to existing state-of-the-art methods, such as SIM, Random Sample

Consensus (RANSAC) [29], Local Subspace Analysis (LSA) [30], SSC and LRR. As shown in

Section III, both Z and LR can be utilized for clustering, we call these two strategies FRR1 and

FRR2, respectively.

1) Synthetic Data: We performed subspace clustering on synthetic data to illustrate the insufficient

data sampling problem (to verify the analysis in Section III). Let k, p, dh and dl denote the number

of subspaces, the number of points in each subspace, the features (i.e., observed dimension) and the

intrinsic dimension of the subspace, respectively. Then the data set, parameterized as (k, p, dh, dl),

is generated by the same procedure in [6]: k independent subspaces {Ci}ki=1 are constructed, whose

basis {U}ki=1 are computed by Ui+1 = TUi, 1 ≤ i ≤ k−1, where T is a random rotation and U1 is

a random column orthogonal matrix of dimension dh × dl. Then we construct a dh × kp data matrix

X = [X1,X2, ...,Xk] by sampling p data vectors from each subspace by Xi = UiCi, 1 ≤ i ≤ k,

with Ci being a dl × p matrix with uniform distribution. To generate the point set for insufficient

data sampling clustering, we fix k = 10, dh = 100 and dl = 50 and vary p ∈ [10, 30]. In this way,

the number of samples in each subspace (at most 30) is less than the intrinsic dimension (50 for each

subspace).

Fig. 1 illustrated the structures of Z = VXV
T
X and LR = [VX ]1:k[VX ]T1:k when p = 10. Since the

data sampling is insufficient, the optimal Z for (3) and (5) reduces to In (see Fig. 1 (a)). In contrast,

LR can successfully reveal the multiple subspace structure (see Fig. 1 (b)).

We also compared the clustering performances of Z and LR on the generated data. Fig. 2 shows

the clustering accuracy as a function of the number of points. It can be seen that the clustering
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(a) Z (b) LR

Fig. 1. The structures of Z and LR, where rank(Z) = rank(X) = kp = 100 and rank(LR) = k = 10, respectively.

Fig. 2. The mean and std. clustering accuracies (%) of Z and LR over 20 runs. The x-axis represents the number of

samples in each subspace and the y-axis represents the clustering accuracy.

accuracy of Z is very sensitive to the particular sampling. Although it performs better when p is

increasing, the highest clustering accuracy is only around 80% (p = 30). In contrast, LR achieves

almost perfect results on all data sets. This confirms that the affinity matrix calculated from LR can

successfully overcome the drawback of using Z in (5) and LRR (also SIM) when the data sampling

is insufficient.

2) Motion Segmentation: Motion segmentation refers to the problem of segmenting tracked feature

point trajectories of multiple moving objects in a video sequence. As shown in [4], all the tracked

points from a single rigid motion lie in a four-dimensional linear subspace. So this task can be regarded

as a subspace clustering problem. We perform the experiments on the Hopkins155 database [31],

which is an extensive benchmark for motion segmentation. This database consists of 156 sequences

of two or three motions thus there are 156 clustering tasks in total. For a fair comparison, we apply

all algorithms to the raw data and the parameters of these methods have been tuned to the best.

We reported the segmentation errors in Table III and presented the percentage of sequences for

which the segmentation error is less than or equal to a given percentage of misclassification in Fig. 3.
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Fig. 3. Percentage of sequences for which the segmentation error is less than or equal to a given percentage of

misclassification.

TABLE I

SEGMENTATION ERRORS (%) ON HOPKINS155 RAW DATA.

Method
2 Motions 3 Motions All (156)

mean median std. max. mean median std. max. mean median std. max.

SIM 24.1 24.8 15.4 49.2 27.9 28.5 15.8 64.1 25.1 25.3 15.7 64.1

RANSAC 9.6 3.3 13.1 49.3 13.8 7.8 13.7 44.7 10.8 4.2 13.5 49.3

LSA 6.8 2.8 8.0 40.9 16.8 15.6 12.6 46.6 9.1 4.8 10.1 46.6

SSC 3.7 0.0 9.7 49.9 11.4 3.3 15.0 44.6 5.5 0.0 11.6 49.9

LRR 3.2 0.3 8.2 40.3 7.8 2.8 10.3 41.5 4.3 0.6 8.9 41.5

FRR1 2.5 0.0 7.4 40.8 5.9 1.4 10.9 39.4 3.5 0.0 8.9 41.8

FRR2 1.8 0.0 5.3 36.1 4.7 1.0 9.1 41.5 2.6 0.0 6.5 41.5

It can be noticed that the performances of three sparsity-based models (i.e., SSC, LRR and FRR)

are better than other methods. SSC is worse than LRR because the 1D l1 norm based criterion finds

the representation coefficients of each vector individually, and there is no global constrain. Although

the basic forms of LRR (3) and FRR (5) share the same optimal solution to Z, FRR1 performs even

better than LRR in real data set. This is because enforcing the normalization constraint in (14) can

improve the performance for clustering. Overall, FRR2 outperforms all other methods in this paper.

This result, again, confirms that LR in FRR2 is better than the general Z in LRR and FRR1 for

subspace clustering.

For three sparsity-based methods, Table II reports the time in seconds. We can see that the

computational time of SSC is lower than the standard LRR. This is because the l1 norm minimizations

in SSC can be solved in parallel and there is only a thresholding process needed at each iteration.

While LRR is solved with an SVD in each iteration, and it does not scale well with large number of
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Fig. 4. Examples of the FRGC-Caltech data set. The top two rows correspond to face images and the bottom row non-face

images.

samples. By combining linearized ADM with an acceleration technique for SVD, the work in [18]

proposed a fast solver for LRR. The running time of this approach is even less than SSC. Our FRR,

again, achieves the highest efficiency because it completely avoids SVD computation in the iterations.

TABLE II

THE AVERAGE RUNNING TIME (SECONDS) PER SEQUENCE FOR THREE SPARSITY-BASED METHODS. LRR(A) DENOTES

THE ACCELERATED LRR PROPOSED IN [18].

Method 2 Motions 3 Motions All (156)

SSC 3.5445 7.8493 4.5057

LRR 38.5156 115.3140 55.6259

LRR(A) 1.9415 3.6788 2.3319

FRR 0.9990 2.2799 1.2847

B. Feature Extraction and Outlier Detection

This experiment tested the effectiveness of TFRR for feature extraction in presence of occlusions.

To simulate sample-outliers, we created a dataset by combining images with faces from the FRGC

version 2 [32] and images non containing faces from Caltech-256 [33]. We selected 20 images for the

first 180 subjects of the FRGC database, having a total of 3600 images. For Caltech-256 database,

which contains 257 image categories, we randomly selected 1 image from each class (a total of

257 non-facial images). All images are resized to 32 × 36 and the pixel values are normalized to

[0, 1]. As shown in Fig. 4, there are two types of corruptions: small errors in the facial images (e.g.,

illuminations and occlusions) and non-facial outliers.

The goal of this task is to robustly extract facial features and use them for classification. That is, we

learn a mapping P between high dimensional observations and low dimensional features using TFRR,
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and identify outliers in the training set by E. Then for a new testing data x, the feature vector y can

be computed as y = Px. We selected the first k (k = 40, 80) identities and 257 non-facial images

as the training set and the remaining (180 − k) identities of facial images for test. We compared

two TFRR based strategies (one is directly using P = Z, called TFRR1, and another is computing

the orthogonal basis P = orth(LR), called TFRR2) with the “Raw data” baseline and other state-

of-the-art approaches, such as PCA, Locality Preserving Projection (LPP) [34] and Neighborhood

Preserving Embedding (NPE) [35]. The parameters and the feature dimensions of all methods are

tuned to the best for each training set. Table III demonstrates that the performances of TFRR1 and

TFRR2 are both significantly better than the baseline and PCA. Moreover, TFRR2 outperforms all

other methods on these experiments.

As shown in Fig. 5, the main advantage of TFRR based methods comes from their ability of

extracting intrinsic facial features and removing outliers. One can see that most of the intrinsic facial

features can be projected into the range space (modeled by ZX, see the middle row), while the small

errors of the facial images (e.g., illuminations and occlusions) and non-facial outliers (modeled by

E) can be automatically removed (see the bottom row).

TABLE III

CLASSIFICATION ACCURACIES (MEAN ± STD.%) ON FRGC-CALTECH DATA SET. “Gm/Pn” MEANS IN THE TESTING

DATA m IMAGES OF EACH SUBJECT ARE RANDOMLY SELECTED AS GALLERY SET AND THE REMAINING n IMAGES AS

PROBE SET. SUCH A TRIAL IS REPEATED 20 TIMES. THE FEATURE DIMENSIONS ARE: PCA (410D, 358D), LPP (170D,

200D), NPE(320D, 160D) AND TFRR2 (190D, 100D). THE DIMENSION OF THE FEATURE VECTOR PRODUCED BY

TFRR1 IS THE SAME AS THE OBSERVED DATA.

Train Test Raw PCA LPP NPE TFRR1 TFRR2

40× 20 + 257
G5/P15 71.1 ± 3.2 70.0 ± 3.2 85.2 ± 2.4 81.1 ± 2.7 81.5 ± 2.0 88.8 ± 2.7

G10/P10 82.8 ± 4.6 81.6 ± 4.6 92.2 ± 2.8 89.6 ± 3.6 89.9 ± 2.7 94.1 ± 2.1

80× 20 + 257
G5/P15 72.3 ± 4.1 71.4 ± 4.1 85.4 ± 2.9 83.7 ± 4.2 82.9 ± 3.3 90.8 ± 2.1

G10/P10 82.6 ± 3.2 81.6 ± 3.2 91.4 ± 3.2 90.4 ± 3.2 90.1 ± 2.1 94.9 ± 2.9

Fig. 6 plotted the energies (in terms of l2 norm) for the columns of E. One can see that the

values of non-facial samples (last 257 columns in E) are obviously larger than that of facial samples.

Therefore, the error term E can also be used to detect the non-facial outliers. Namely the i-th sample

in X is considered as outlier if and only if ‖[E]i‖2 ≥ γ. By setting the parameter γ = 2.2, the outlier

detection accuracies5 are 98.68% on the 40 × 20 + 257 data and 99.19% on 80 × 20 + 257 data,

respectively.

5These accuracies are obtained by computing the percentage of correctly identified outliers. One may also consider the

receiver operator characteristic (ROC) and compute its area under curve (AUC) [14] to evaluate the performance.
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X:

ZX:

E:

Fig. 5. Some examples of using TFRR to recover the intrinsic facial features and remove small errors and outliers (modeled

by X = ZX+E). The left two columns correspond to facial samples and the right two are non-facial samples. The middle

row shows the features extracted by our algorithm (ZX) and the bottom row shows the corruptions (E).

(a) 40× 20 + 257 (b) 80× 20 + 257

Fig. 6. The l2 norm for the columns of E. The first 800 (a) and 1600 (b) columns are facial images and the last 257

columns are outliers.

VII. CONCLUSIONS

This paper proposed a novel framework, named fixed-rank representation (FRR), for robust unsu-

pervised visual learning. We proved that FRR can reveal the multiple subspace structure for clustering,

even with insufficient observations. We also demonstrated that the transposed FRR (TFRR) can

successfully recover the column space, and thus can be applied for feature extraction. There remain

several directions for future work: 1) provide a deeper analysis on LR (e.g., the general strategy for

choosing efficient basis from R(Z) for subspace clustering and determining dimension for feature

extraction), 2) apply FRR to supervised and semi-supervised learning.
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