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Abstract—Automatic facial action unit detection from video is a long standing problem in facial expression analysis. Research
has focused on registration, choice of features, and classifiers. A relatively neglected problem is the choice of training images.
Nearly all previous work uses one or the other of two standard approaches. One approach assigns peak frames to the positive
class and frames associated with other actions to the negative class. This approach maximizes differences between positive
and negative classes, but results in a large imbalance between them, especially for infrequent AUs. The other approach reduces
imbalance in class membership by including all target frames from onsets to offsets in the positive class. However, because
frames near onsets and offsets often differ little from those that precede them, this approach can dramatically increase false
positives. We propose a novel alternative, dynamic cascades with bidirectional bootstrapping (DCBB) to select training samples.
Using an iterative approach, DCBB optimally selects positive and negative samples in the training data. Using Cascade Adaboost
as basic classifier, DCBB exploits the advantages of feature selection, efficiency, and robustness of Cascade Adaboost. To
provide a real-world test, we used the RU-FACS (a.k.a. M3) database of non-posed behavior recorded during interviews. For
most tested action units, DCBB improved AU detection relative to alternative approaches.

Index Terms—Facial expression analysis, action unit detection, FACS, dynamic cascade boosting, bidirectional bootstrapping.
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The face is one of the most powerful channels of nonver-

bal communication. Facial expression provides cues about

emotional response, regulates interpersonal behaviar, an...... | fe E\pg/~ = |  .... ..
communicates aspects of psychopathology. To make us — - -
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and Friesen [1] proposed the Facial Action Coding SYSt€Mgive Bootstrap .3 Ambiguous AU frames =

<=L Subtle AU frames Negative Bootstrap
(FACS). FACS segments the visible effects of facial muscle
activation into “action units (AUs)”. Each action unit is_. .
related to one or more facial muscles. These anatonllzi@' 1. Example °f_5”0”9' subtle, and ambiguous
units may be combined to represent more molar faciﬁ?mples of FACS action unit 12. Strong samples t)_/p—
expressions. Emotion-specified joy, for instance, is reptjga"y cor_respond to the peak, or maximum intensity,
sented by the combination of AU6 (cheek raiser, whicﬂnOI ambiguous fram?s correspond to AU onset and
results from contraction of the orbicularis occuli muscle fiset and frames proximal to them._ Subtle samples are
and AU12 (lip-corner puller, which results from contractio Iocgted .between.strong and amblguous_gnes. Using
of the zygomatic major muscle). The FACS taxonom n iterative aIgorlthm, DCBB selec.ts positive samp_les
was developed by manually observing live and record HCh that the detection accuracy is optimized during
facial behavior and by recording the electrical activity offaining.
underlying facial muscles [2]. Because of its descriptive
power, FACS has become the state of the art in manual

measurement of facial expression [3] and is widely used
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Automatic detection of AUs from video is a challenging
problem for several reasons. Non-frontal pose and mod-
erate to large head motion make facial image registration
difficult, large variability occurs in the temporal scale of
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facial gestures, individual differences occur in shape afmahd subtle but not ambiguous AU frames are assigned to
appearance of facial features, many facial actions are-inhthe positive class. For the negative class, DCBB proposes
ently subtle, and the number of possible combinations af mechanism, which is similar as Cascade AdaBoost to
40+ individual action units numbers in the thousands. Moaptimize that as well, the principles are that the weight
than 7000 action unit combinations have been observefl misclassified negative class will be increased during
[4]. Previous efforts at AU detection have emphasizadaining step of each weak classifier, and don't learning to
types of features and classifiers. Features have includadch at each cascade stage. Moreover, the positive class is
shape and various appearance features, such as graysdaged at each iteration, while the corresponding negativ
pixels, edges, and appearance (e.g., canonical appearadess is reselected again.
Gabor, and SIFT descriptors). Classifiers have includedin experiments, we evaluated the validity of our approach
support vector machines (SVM) [10], boosting [11]to class assignment and selection of features. In the first
hidden Markov models (HMM) [12] and dynamic Bayesiaexperiment, we illustrate the importance of selecting the
networks (DBN) [13] review much of this literature. right positive samples for action unit detection. In the
By contrast, little attention has been paid to the asecond we compare DCBB with standard approaches based
signment of video frames to positive and negative classem SVM and AdaBoost.
Typically, assignment has been done in one of two ways.The rest of the paper is organized as follows. Section
One assigns to the positive class those frames at the peak oéviews previous work on automatic methods for action
each AU or proximal to it. Peak refers to frame of maximuranit detection. Sectior8 describes pre-processing steps
intensity of an action unit between when it begins (“onsetfpr alignment and feature extraction. Sectiérgives de-
and when it ends (“offset”). The negative class then tsils of our proposed DCBB method. Sectiénprovides
chosen by randomly sampling other AUs, including Aléxperimental results in non-posed, naturalistic videa. Fo
0 or neutral. This approach suffers at least two drawbaclkscperimental evaluation, we used FACS-coded interviews
(1) the number of training examples will often be smalfrom the RU-FACS (a.k.a. M3) database [18, 19]. For
which results in a large imbalance between positive amdost action units tested, DCBB outperformed alternative
negative frames; and (2) peak frames may provide too littiproaches.
variability to achieve good generalization. These prolslem
may be circumvented by following an alternative approacl@ PREVIOUS WORK
that is to include all frames from onset to offset in the pos- ) ] ]
itive class. This approach improves the ratio of positive th1iS Section describes previous work on FACS and on
negative frames and increases representativeness gposftutomatic detection of AUs from video.
examples. The downside is confusability of positive and
negative classes. Onset and offset frames and many of thgse FACS

proximal or even further from them may be indistinguisabley, o F5cial Action Coding System (FACS) [1] is a compre-
from the negative class. As a consequence, the number,ahqive anatomically-based system for measuring nearly

false positives can dramatically increase. , all visually discernible facial movement. FACS describes
To address these issues, we propose an extension of fia| activity on the basis of 44 unique action units(AUS),

aboost [14-16] called Dynamic Cascades with Bidirectiongl \ye|| as several categories of head and eye positions and

Bootstrapping (DCBB). Fig. 1 illustrates the main idedy,qyements. Facial movement is thus described in terms of
Having manually annotated FACS data with onset, pegkynituent components, or AUs. Any facial expression may
and offset, the question we address is how best to SeIECtHéQrepresented as a single AU or a combination of AUs.
AU frames fqr the positive and negative c!ass. Preliminagy,, example, the felt, or Duchenne, smile is indicated by
results for this work has been presented in [17].  moyement of the zygomatic major (AU12) and orbicularis
In contrast to previous approaches to class assignmest i pars lateralis (AU6). FACS is recognized as the
DCBB automatically distinguishes between strong, subtlg, comprehensive and objective means for measuring
and ambiguous frames for AU events of differentintensityacim movement currently available, and it has become
Strong frames correspond to the peaks and the ones proxis standard for facial measurement in behavioral research
mal to them; ambiguous frames are proximal to onsets anqychology and related fields. FACS coding procedures
offsets; subtle frames occur between strong and ambigualys,  or coding of the intensity of each facial action on a 5-
ones. Strong and subtle frames are assigned to the posifige, intensity scale, which provides a metric for the degre
class. By distinguishing between these three types, DCR i scular contraction and for measurement of the timing

maximizes the number of positive frames while reducing ¢5:ia| actions. FACS scoring produces a list of AU-based
confusability between positive and negative classes. jascriptions of each facial event in a video record. Fig. 2
For high intensity AUs in comparison with low intensityg s an example for AU12.

AUs, the algorithm will select more frames for the positive

class. Some of these frames may be similar in intensit . . ]

to low intensity AUs. Similarly, if multiple peaks occur be-2-2 Automatic FACS detection from video

tween an onset and offset, DCBB assigns multiple segmeifitso main streams in the current research on automatic
to the positive class. See Fig. 1 for an example. Stromgalysis of facial expressions consider emotion-specified
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Actio}n Unit

Peak

Fig. 2. FACS coding typically involves frame-by-frame
inspection of the video, paying close attention to tran-
sient cues such as wrinkles, bulges, and furrows to
determine which facial action units have occurred and
their intensity. Full labeling requires marking onset,
peak and offset and may include annotating changes
in intensity as well. Left to right, evolution of an AU 12
(involved in smiling), from onset, peak, to offset.

Fig. 3. AAM tracking across several frames

HMM to temporally segment and recognize action units.
Lucey et al. [30, 35] compared the use of different shape
and appearance representations and different registratio
mechanisms for AU detection.

Tong et al. [13] used Dynamic Bayesian Networks with
expressions (e.g., happy or sad) and anatomically basghearance features to detect facial action units in posed
facial actions (e.g., FACS). The pioneering work of Blackgcial behavior. The correlation among action units served
and Yacoob [20] recognizes facial expressions by fittings priors in action unit detection. Comprehensive reviews
local parametric motion models to regions of the face anf automatic facial coding may be found in [5-8, 36].
then feeding the resulting parameters to a nearest neighboto the best of our knowledge, no previous work has
classifier for expression recognition. De la Torre et al][2konsidered strategies for selecting training samples @i ev
used condensation and appearance models to simultafged their importance in AU detection. This is the first
ously track and recognize facial expression. Chang et ghper to propose an approach to optimize the selection of
[22] learned a low dimensional Lipschitz embedding tgositive and negative training samples. Our findings sugges
build a manifold of shape variation across several peopigat a principled approach to optimizing the selection of

and then used I-condensation to simultaneously track afiflining samples increases accuracy of AU detection velati
recognize expressions. Lee and Elgammal [23] employg§l current state of the art.

multi-linear models to construct a non-linear manifoldttha

factorizes identity from expression. 3 FACIAL FEATURE TRACKING AND IMAGE
Several promising prototype systems were reported tr}—af:‘ATURES

can recognize deliberately produced AUs in either near ) ] ) )
frontal view face images (Bartlett et al., [24]; Tian et! Nis section describes the system for facial feature tragki

al., [8]; Pantic & Rothkrantz, [25]) or profile view face Using active appearance models (AAMs), and extraction
images (Pantic & Patras, [26]). Although high scores ha\?é‘d representatlc_)n of shape and appearance features for
been achieved on posed facial action behavior [13, 27, 28]Put to the classifiers.
accuracy tends to be lower in the few studies that have
tested classifiers on non-posed facial behavior [11, 29, 38]1 Facial tracking and alignment
In non-posed facial behavior, non-frontal views and rigidver the last decade, appearance models have become
head motion are common, and action units are often le@greasingly important in computer vision and graphics.
intense, have different timing, and occur in complex conparameterized Appearance Models (PAMs) (e.g. Active
binations [31]. These factors have been found to reduce Adlppearance Models [37—39] and Morphable Models [40])
detection accuracy [32]. Non-posed facial behavior is morgwe been proven useful for detection, facial feature align
representative of facial actions that occur in real lifejaih ment, and face synthesis. In particular, Active Appearance
is our focus in the current paper. Models (AAMs) have proven an excellent tool for aligning
Most work in automatic analysis of facial expressionfacial features with respect to a shape and appearance
differs in the choice of facial features, representationsjodel. In our case, the AAM is composedasf landmarks
and classifiers. Barlett et al. [11, 19, 24] used SVM anthat deform to fit perturbations in facial features. Person-
AdaBoost in texture-based image representations to recegecific models were trained on approximatéy of the
nize 20 action units in near-frontal posed and non-poseiieo [39]. Fig. 3 shows an example of AAM tracking
facial behavior. Valstar and Pantic [26, 33, 34] proposeddd facial features in a single subject from the RU-FACS
system that enables fully automated robust facial expyessi{18, 19] video data-set.
recognition and temporal segmentation of onset, peak, andAfter tracking facial features using AAM, a similarity
offset from video of mostly frontal faces. The systentransform registers facial features with respect to anageer
included particle filtering to track facial features, Gaborface (see middle column in Fig. 4). In the experiments
based representations, and a combination of SVM angported here, the face was normalize@1a x 212 pixels.



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 4

Active Active
negative set positive set

Spreading
with Constrains

Final AU
Detector

Training

\ e Piece-wise
Similarity ' <= / Backward —— N Affine
Transformation \ Mapping } Warpping

‘ Dynamic Cascade Detector

Fig. 5. Bidirectional Bootstrapping.

current classifier. In this section, we propose Bidireaion
Fig. 4. Two-step alignment Bootstrapping, a method to bootstrap both positive and
negative samples.
Bidirectional Bootstrapping beings by selecting as posi-

To extract appearance representations in areas that hé¥@ samples only the peak frames and uses Classification
not been explicitly tracked (e.g. nasolabial furrow), wand Regression Tree (CART) [46] as a weak classifier (Ini-
use a backward piece_wise affine warp with De|auné-@| Iearning in SeCtIOI‘Ill) After this initial training Step,
triangulation to set up the correspondence. Fig. 4 shows figlirectional Bootstrapping extends the positive samples
two step process for registering the face to a canonical pdsem the peak frames to proximal frames and redefines new
for AU detection. Purple squares represent tracked poim&ovisional positive and negative training sets (Dynamic
and blue dots represent meaningful non-tracked points. Ti§@rning in Section.2). The positive set is extended by in-
dashed blue line shows the mapping between a point Giiding samples that are classified correctly by the previou
the mean shape and its corresponding point in the origirféfong classifier (Cascade AdaBoost in our algorithm), the
image. This two-step registration proves important towafggative set is extended by examples misclassified by the
detecting low intensity action units. same strong classifier, thus emphasizing negative samples
close to the decision boundary. With the bootstrapping of
positive samples, the generalization ability of the cissi
3.2 Appearance features is gradually enhanced. The active positive and negative
Appearance features for AU detection [11, 41] outpegets then are used as an input to the CART that returns
formed shape only features for some action units; see Lucgypothesis, which updates the weights in the manner of
et al. [35, 42, 43] for a comparison. In this section, w&entle AdaBoost [47], and the training continues until the
explore the use of the SIFT [44] descriptors as appearanggiation between previous and current Cascade AdaBoost
features. become smaller than a defined threshold. Fig. 5 illustrates
Given feature points tracked with AAMs, SIFT descripthe process. In Fig. ® is potential positive data sef is
tors are first computed around the points of interest. SIfnegative data set (Negative Poal}, is the positive set in
descriptors are computed from the gradient vector for eaitial learning step,P,, is the active positive set in each
pixel in the neighborhood to build a normalized histograrnteration, the size of solid circle illustrate the integsdf
of gradient directions. For each pixel within a subregiomdU samples, the right ellipses illustrate the spreading of
SIFT descriptors add the pixel's gradient vector to a higtynamic positive set. See details in Algorithimand 2.
togram of gradient directions by quantizing each orieotati
to one of 8 directions and weighting the contribution of eacE 1 Initial traini ¢
vector by its magnitude. ' nitial training step
This section explains the initial training step for DCBB.
4 DYNAMIC CASCADES WITH BIDIREC- In _the ini_tial training step we _s_elect the peaks and the two
neighboring samples as positive samples, and a randomly
TIONAL BOOTSTRAPPING (DCBB) selected sample of other AUs and non-AUs as negative
This section explores the use of a dynamic boosting teckemples. As in standard AdaBoost [14], we define the false
niques to select the positive and negative samples thpaisitive target ratio K.), the maximum acceptable false
improve detection performance in AU detection. positive ratio per cascade stagg¢.)( and the minimum
Bootstrapping [45] is a resampling method that is comacceptable true positive ratio per cascade stage [The
patible with many learning algorithms. During the bootinitial training step applies standard AdaBoost using CART
strapping process, the active sets of negative exampld6] as a weak classifier as summarized in Algorithm 1.
are extended by examples that were misclassified by the
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I nput:

stronger as new AU positive samples are added for training.

Positive data seP, (contains AU peak frameg and We added additional constraint to avoid adding ambiguous

p=E1);

AU frames to the dynamic positive set. The algorithm is

Negative data set) (contains other AUs and non-summarized in Algorithm 2.

AUSs);

Target false positive rati@; |

. . . ut
Maximum acceptable false positive ratio per cascagllg

stagef,;

Minimum acceptable true positive ratio per cascade ,

staged,;

Initialize:

Current cascade stage numbet 0;
Current overall cascade classifier’s true positive ratio

Cascade detectdil, from the Initial Learning step;
Dynamic working setSp = {Pp,@Qp};

All the frames in this action unit are represented as
potential positive samples in the st = {Ps, P, }.

P, contains the strong positive sampld3, contains
peak related samples described abavg,c P;. P,
contains ambiguous positive samples;

A large negative data s€} contains all other AUs and
non-AUs and its size isV,.

« Current overall cascade classifier’s false positive ratio e
F, =1.0;
e So = {Py,Qo} is the initial working setQo C Q.

Update positive working set by spreading within P and
update negative working set by bootstrap in @ with the
dynamic cascade learning process:

The number of positive samples 1€,. The number
of negative samples 8/, = N, x Ry, Ry = 8§;

While F; > F.

1) t = t+ 1,f; = 1.0; Normalize the weights.; ; for Initialize: We set the value alV, as the size of. The size
each sampler; to guarantee that, = {w;;} is a of the old positive data set i%,_,,4 = 0 and the diffusion
distribution. stage ist = 1.

2) While f; > f» .

a) For each feature,,, train a weak classifier onWhile (N, — Np_ota)/Np > 0.1
Sp and find the best featukg (the one with the 1) AU Positive Spreading: N, o0 = N,. Use the
minimum classification error). o current detector on the data sé to potentially
b) Add the feature; into the strong classifieH/;, add more positive sample#,, are all the positive
update the weight in Gentle AdaBoost manner.  gampjes that are determined by the cascade classifier
¢) Evaluate o, with the current strong classifier H,_ .
H,, adjust the rejection threshold under the 2y arg Congrain in spreading: k indexes the current
constraint that the true positive ratio does not AU event andi is the index to the current frame in
drop belowd, . . this AU event. Calculate the similarity values (Eq.
d) Decrease threshold untl. is reached. 1) between the peak frame in evenatand all peak
e) Computef; under this threshold. frames with the lowest intensity value ‘A, and denote
END While the average similarity value witl§;.. Calculate the

3) Fit1 = Fi x fi; Dey1 = Dy x d,; keep inQq the similarity value between frame and peak frame in
negative samples that the current strong classiigr eventk, its value isSy;, if Sk; < 0.5 x S, framei
misclassified (current false positive samples), record  will be excluded fromP,,,.
its size asKsq. 3) After the above step, the remaining positive work set

4) Use the detectoH, to bootstrap false positive sam- is P, = P,,, N, = size of P,,. Using the H; ,
ples from negative) randomly and repeat until the detector to bootstrap false positive samples from the
negative working set ha, samples. negative set) until the negative working se&f,, has

END While N, = x Ry x N, samples N, is different in AUs.
Output: 4) Train the cascade classifidi; with the dynamic
A t-levels cascade where each level has a strong boosted working set{P,,, Q.,}. As R; varies, the maximum

classifier with a set of rejection thresholds for each weak

acceptable false positive ratio per cascade syage

classifier. also becomes smaller (Eq. 2).
5) t=t+1; empty P, andQ,,.
Algorithm 1: Initial learning END While
4.2 Dynamic learning

Once a cascade of peak frame detectors is learned in the

Algorithm 2: Dynamic learning

initial learning stage (Sectio#.1), we are able to enlarge
the positive set to increase the discriminative perforreanc The function to measure the similarity between the peak

of th

e whole classifier. The AU frames detector will becomand other frames is the Radial Basis function between the
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appearance representation of two frames: that occur more thar20 times in the database (i.e. 20
n or more peaks). These AUs are: AU1, AU2, AU4, AUS5,
S, = 1 ZSim(fk’ fi), jel:n AU6, AU7, AU10, AU12, AU14, AU15, AU17, AU18,
nei4 and AU23. Fig. 6 shows the number of frames that each

_ __—(Dist(i,k)/maz(Dist(:,k)))> AU occurred and their average duration. Fig. 7 illustrates
Sik = Sim(fi, fx) =€ ) . ios f | ¢ bi
- 12 a representative time series for severa AUs rom subject
Dist(i, k) = {Z(fkj _ fij)2] gell:ml ) S010. Blue asterisks represent onsets, red circles peak
frames, and green plus signs the offset frames. In each

) o _experiment, we randomly selectéél subjects for training
n refers to the total number of AU instances with intensity,q the othed 0 subjects for testing.

‘A, and m is the length of the AU features.

The dynamic positive working set becomes larger but  x o'
the negative samples pool is finite, $g,, needs to be =t
changed dynamically. Moreovety, is function of N, 2f
because different AU has different size of the negative |t
samples pool. Some AUs (e.g., AU12) are likely to occurE L4
more often than others. Rather than tuning these threshold@lff
one by one, we assume that the false positive rgtio Sosf

changes exponentially in each stagéhat is: 208

0.4

j=1

oo = fe 5 (1= @

120

AUl AU2 AU4 AU5 AU6 AUT7 AU10 AU12 AU14 AU15 AU17 AU18 AU23

In our experimental set up, we satas 0.2 ands as
0.04 respectively. We found empirically that those values . '®
are suitable for all the AUs to avoid lack of useful negative %
samples in RU-FACS database. After the spreading stages
the ratio between positive and negative samples become§ %0
balanced, except for some rare AUs (e.g., AU4, AUL0) £ 4ok
where the unbalance is due to the scarceness of positivé
frames in the database. “

0

AU1 AU2 AU4 AU5 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU18 AU23

5 EXPERIMENTS

DCBB iteratively samples training frames and then usésg. 6. Top) Frame number from onset to offset for the
Cascade AdaBoost for classification. To evaluate the effi3 most frequent AUs in the M3 dataset. Bottom) The
cacy of iteratively sampling training samples, Experimemtverage duration of AU in frames.

1 compared DCBB with the two standard approaches.

They are selecting only peaks and aIternatingy selecting, Experiment 1: Iteratively sampling training im-
all frames between onsets and offsets. Experiment 1 thé&es with DCBB

evaluated whether iteratively sampling training images in
creased AU detection. Experiment 2 evaluated the effica-g
of Cascade AdaBoost relative to SVM when iterativel
sampling training samples. In our implementation, DCB
uses Cascade AdaBoost, but other classifiers might be u

instead. Experiment 2 informs whether better results mig _ ; . o
be achieved using SVM. Experiment 3 explored the use e} ether the iteratively selecting training samples syate

three appearance descriptions (Gabor, SIFT and DAISY) |ﬁ1better than the strategy using only peak AU frames or the

conjunction with DCBB (Cascade Adaboost as cIassifieert_r"’Itegy using all the AU fram.es as positive samplles. For
different positive samples assignments, the negative sam-

ples are defined by the method used in Cascade AdaBoost.
5.1 Database We apply the DCBB method, described in Sectioand
The three experiments all used RU-FACS (a.k.a. M3jse appearance features based on SIFT descriptors (Section
database [18, 19]. RU-FACS consists of video-record@{l. For all AUs the SIFT descriptors are built using a square
interviews of 34 men and women of varying ethnicityof 48 x 48 pixels for twenty feature points for the lower
Interviews were approximately two minutes in duratiorface AUs or sixteen feature points for upper face (see Fig.
Video from five subjects could not be processed for tech). We trainedl3 dynamic cascade classifiers, one for each
nical reasons (e.g., noisy video), which resulted in usabJ, as described in Section.2, using a one versus all
data from 29 participants. Meta-data included manual FAG8heme for each AU.
codes for AU onsets, peaks and offsets. Because somdop of Fig. 8 shows the manual labeling for AU12 of the
AUs occurred too infrequently, we selected the 13 AUsubjectS015. We can see eight instances of AU12 with

gis experiment illustrates the effect of iteratively stileg
sitive and negative samples (i.e. frames) while training
e Cascade AdaBoost. As a sample selection mechanism
984op of the Cascade AdaBoost, DCBB could be applied
other classifiers as well. The experiment investigates
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Fig. 7. AUs characteristics in subject S010, duration, intensity, onset, offset, peak.(frames as unit in X axis, Y
axis is the intensity of AUs)
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Fig. 8. The spreading of positive samples during each dynamic training step for AU12. See text for the
explanation of the graphics.

varying intensities ranging from A (weak) to E (strong)peak, which reduces to the number of false positives. The

The black curve in bottom figures represent the similarigllipses and rectangles in the figures contain frames that

(eq. 1) between the peak and the neighboring frames. Tée selected as positive samples, and correspond to strong
peak is the maximum of the curve. The positive samplesd subtle AUs defined above. The triangles correspond to

in the first step are represented by green asterisks, in fr@mes between the onset and offset that are not selected
second iteration by red crosses, in the third iteration @s positive samples, and represent ambiguous AUs in Fig.

blue crosses, and in the final iteration by black circleg.

Observe that in the case of high peak intensity, subfiguresTable 1 shows the number of frames at each level of

3 and 8 (top right number in the similarity plots), the final tensity and the percentage of each intensity that were

. . . N
selected positive samples contain areas of low S|m|lar|§y . . .
values. When AU intensity is low, subfigure 7, positiveelected as positive by DCBB in the training set. The letters

. . o . ‘A-E’ in left column refers to the level of AU intensities
samples are selected if they have a high similarity with thﬁ . '
P y g v e ‘Num’ and ‘Pct’ in the top rows refers to the number
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TABLE 1
Number of frames at each level of intensity and the percentage of each intensity that were selected as positive
by DCBB
AU AU2 AUZ AUS AU6 AU7
Num Pct Num Pct Num Pct Num Pct Num Pct Num Pct
A | 986 | 46.3% | 845 | 43.6% | 325 | 37.1% | 293 | 86.4% | 119 | 40.2% 98 | 47.9%
B | 3513 | 83.3% | 3130 | 79.4% | 912 | 70.4% | 371 | 97.7% | 1511 | 71.3% | 705 | 93.4%
C | 3645 | 90.9% | 3241 | 91.3% | 439 | 83.8% | 110 | 99.7% | 1851 | 87.8% | 1388 | 97.9%
D | 2312 | 90.3% | 1753 | 95.6% | 73 | 79.6% 0 NaN | 1128 | 84.2% | 537 | 98.7%
E | 151 | 99.3% | 601 | 96.5% 0 NaN 23 | 96.6% | 118 | 91.4% | 153 | 98.5%
AUI0 AU12 AU14 AU15 AUL7 AUI8 AU23
Num Pct Num Pct Num Pct Num Pct Num Pct Num Pct Num Pct
A | 367 | 61.3% | 1561 | 38.1% | 309 | 49.7% | 402 | 72.6% | 445 | 34.1% | 134 | 87.4% | 25 | 77.0%
B | 2131 | 90.8% | 4293 | 73.3% | 2240 | 93.9% | 1053 | 89.7% | 2553 | 70.1% | 665 | 99.2% | 190 | 87.8%
C | 1066 | 92.8% | 5432 | 82.0% | 1040 | 95.6% | 611 | 97.4% | 1644 | 76.4% | 240 | 98.7% | 198 | 97.3%
D | 572 | 88.6% | 2234 | 83.5% | 268 | 96.8% | 68 | 98.6% | 966 | 85.3% | 83 | 98.6% | 166 | 98.9%
E 0 NaN | 1323 | 92.4% | 232 | 94.3% 0 NaN | 226 | 80.2% 0 NaN | 361 | 99.1%

of AU frames at each level of intensity and the percentagé 0.2 to 0.6. The second parameter is the stopping criterion
of frames that were selected as positive examples at e consider that the algorithm has converged when the
last iteration of dynamic learning step, respectivelyhdre number of new positive samples between iterations is less
were no AU frames in one level of intensity, the ‘Pct’ valughan10%. In preliminary experiments, values less tHaf%

will be ‘NaN’. From this table, we can see that DCBBfailed to change detection performance as indicated by ROC
emphasizes intensity levels ‘C’, ‘D’ and ‘E’. curves. Using the stopping criterion, the algorithm typlica

Fig. 9 shows the Receiver-Operator Characteristic (RO€§nverged within three or four iterations.
curves for testing data (subjects not in the training) using
DCBB. The ROC curves were obtained by plotting trué.3 Experiment 2: Comparing Cascade Adaboost
positives ratios against false positives ratios for défar and Support Vector Machine (SVM) when used with
decision threshold values of the classifier. Results areshoiteratively sampled training frames

for each AU. In each figure, five or six ROC curves argym and AdaBoost are two commonly used classifiers
shown:lmtlgl Iegrnlng corresponds to training on o.nly thefor AU detection. In this experiment, we compared AU
peaks (which is same as Cascade Adaboost without figiection by DCBB (Cascade AdaBoost as classifier) and
DCBB strategy);spread xcorresponds to running DCBB gy ysing shape and appearance features. We found that
x times; All _denotes using all frames_bet\_/veen onset angr poth types of features (i.e. shape and appearance),
offset. The first number between lingsn Fig. 9 denotes pcBB achieved more accurate AU detection.
the area under the ROC; the second number is the size ofor compatibility with the previous experiment, data
positive samples in the testing dataset; and separat¢dsby from the samel9 subjects as above were used for training
the number of negative samples in the testing dataset. TH&y the otherl0 for testing. Results are reported for the
third number denotes the size of positive samples in trginif 3 most frequently observed AU. Other AU occurred too
working sets and separated Pythe total frames of target jnfrequently (i.e. fewer than 20 occurrences) to obtain
AU in training data sets. AUS has the minimum numbejgjiaple results and thus were omitted. Classifiers for each
of training examples and AU12 has the largest number &f; were trained using a one versus-all strategy. The ROC
examples. We can observed that the area under the ROCdgf,es for thel3 AUs are shown in Fig. 10. For each
frame-by-frame detection improved gradually during eackyy six curves are shown, one for each combination of
learning stage; performance improved faster for AU4, AU?Vaining features and classifiers. ‘App+DCBB’ refers to
AU10, AU14, AU1S5, AUL7, AU18, AU23 than for AU, pcBp using appearance features; ‘Peak+Shp+SVM’ refers
AU2, AU6 and AU12 during Dynamic learning. Note that, sy using shape features trained on the peak frames
using all the frames betyveen the onset and offset (‘A”'@and two adjacent frames) [10]; ‘Peak+App+SVM’ [10]
typically degraded detection performance. The table bel@sers to train a SVM using appearance features trained on
Fig. 9 shows the areas under the ROC when only pegie peak frame (and two adjacent frames); ‘All+Shp+SVM’
is selected for training, when all frames are selected apgkers to SVM using shape features trained on all frames
DCBB is used. DCBB outperformed both alternatives. petween onset and offset; ‘All+PCA+App+SVM’ refers to
Two parameters in the DCBB algorithms were manuallVM using appearance features (after PCA processing)
tuned and remained the same in all experiments. Otrained on all frames between onset and offset, here, in
parameter specifies the minimum similarity value belowrder to computationally scale in memory space, we re-
which no positive sample will be selected. The threshold duced the dimensionality of the appearance features using
based on the similarity equation (eq. 1). It was set at Ogincipal component analysis (PCA) that preser98$;
after preliminary testing found results stable within agan of the energy. ‘Peak+App+Cascade Boost’ refers to use
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Fig. 9. The ROCs improve with the spreading of positive samples: See text for the explanation of Peak, Spread

x and All.
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Fig. 10. ROC curve for 13 AUs using six different methods: AU peak frames with shape features and
SVM(Peak+Shp+SVM); all frames between onset and offset with shape features and SVM (All+Shp+SVM); AU
peak frames with appearance features and SVM (Peak+App+SVM); sampling 1 frame in every 4 frames between
onset and offset with PCA to reduce appearance dimensionality and SVM (All+PCA+App+SVM); AU peak
frames with appearance features and Cascade AdaBoost(Peak+App+Cascade Boost); DCBB with appearance

features(DCBB).
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the peak frame with appearance features and Cascddesubjects as before were used for training aridfor
AdaBoost [14] classifier (will be equivalent to the firstesting. Fig. 11 shows the ROC detection curves for the
step in DCBB). As can be observed in the figure, DCBBwer AUs using Gabor filters at eight different orientagon
outperformed SVM for all AUs (except AU18) using eitheand five different scales, DAISY [50] and SIFT [44].
shape or appearance when training in the peak (and t&or most of AUs, ROC curves for SIFT and DAISY were
adjacent frames). When training the SVM with shape armmparable. With respect to processing speed, DAISY was
using all samples, the DCBB performed better for elevdaster.
out of thirteen AUs. In the SVM training, the negative
samples were selected randomly (but the same negative
samples when using either shape or appearance features).
The ratio between positive and negative samples was fixed
to 30. Compared with the Cascade AdaBoost (first step in
DCBB that only uses the peak and two neighbor samples),
DCBB improved the performance in all AUs.

Interestingly, the performance for AU4, AU5, AU14,
AU18 using the method ‘All+PCA+App+SVM’ was bet-
ter than ‘DCBB’. ‘All+PCA+App+SVM’ uses appearance B % boins | 055 12656 sao25
features and all samples between onset and offset. All OB e TP
parameters in SVM were selected using cross-validation. It
is interesting to observe that AU4, AU5, AU1_4,_ AU15 anq:ig. 12. Using different number of feature points
AU18 are the AUs that have very few total training samples
(only 1749 total frames for AU4797 frames for AU54089 . o
frames for AU14,2134 frames for AU15,1122 frames An important parameter largely conditioning the perfor-
for AU18), and when having very little training data theMance of appearance-based descriptors is the number and
classifier can benefit from using all samples. Moreover, tifcation of features selected to build the representafon.
PCA step can help to remove noise. It is worth pointing oGMPutational considerations it is impractical to build ap
that best results were achieved by the classifiers using &5@rance representations in all possible regions of sttere
pearance (SIFT) instead of shape features, which sugge Seva]uate the influence of.number of regions selected,
SIFT may be more robust to residual head pose variatidff varied the number of regions, or points, in the mouth
in the normalized images. Using unoptimized MATLAB2 €2 from 2 to 20. _As shown in Fig. 12, .Iarge red_ circles
code, training DCBB typically required one to three hourepresent the location of two feature regions, adding blue

depending on the AU and number of training samples. Sduares and red circles increases the numbéz;tadding
purple triangles and small black squares increases the num-

_ _ ber to 18 and20 respectively. Comparing results for 12,
5.4 Experiment 3. Appearance descriptors for 18, and20 regions, or points, performance was consistent
DCBB with intuition. While there were some exceptions, in gehera

Our findings and those of others suggest that appearaR€&formance improved monotonically with the number of
features are more robust than shape features in unpo&@ions (Fig. 12).
video with small to moderate head motion. In the work
de_scnbe_d above, we used SIFT to represent_ appearanceGln CONCLUSIONS
this section, we compare SIFT to two alternative appearance
representations, DAISY and Gabor [24, 41]. An unexplored problem and critical to the success of
Similar in spirit to SIFT descriptors, DAISY descriptorsautomatic action unit detection is the selection of the
are an efficient feature descriptor based on histogramy. Ttpositive and negative training samples. This paper prapose
have frequently been used to match stereo images [48ynamic cascade bidirectional bootstrapping (DCBB) for
DAISY descriptors use circular grids instead of the regulahis purpose. With few exceptions, DCBB achieved better
grids in SIFT; the former have been found to have betteletection performance than the standard approaches of
localization properties [49] and to outperform many statselecting either peak frames or all frames between the
of-the-art feature descriptors for sparse point matchb®y.[ onsets and offsets. We also compared three commonly
At each pixel, DAISY builds a vector made of valuesised appearance features and the number of regions of
from the convolved orientation maps located on concentiiitterests or points to which they were applied. We found
circles centered on the location. The amount of Gaussitivat use of SIFT and DAISY improved accuracy relative to
smoothing is proportional to the radius of the circles.  Gabor under same number of sampling points. For all three,
In the following experiment, we compare the perforincreasing the number of regions or points monotonically
mance on AU detection for three appearance represeritaproved performance. These findings suggest that DCBB
tions, Gabor, SIFT and DAISY using DCBB with Caswhen used with appearance features, especially SIFT or
cade Adaboost. Each was computed at the same locati@#SY, can improve AU detection relative to standard
(twenty feature points in lower face, see Fig. 12). The samselection methods for selecting training samples.
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Fig. 11. Comparison of ROC curves for 13 AUs using different appearance representations based on SIFT,
DAISY, and Gabor representations

Several issues remain unsolved. The final Cascade Adse of these techniques in other computer vision problems
aboost classifier has automatically selected the featmes guch activity recognition, where the selection of the pesit
training samples that improve classification performance and negative samples might play an important role in the
the training data. During the iterative training, we have amsults.
intermediate set of classifiers (usually frainto 5) that
could potentially be used to model the dynamic pattelACKNOWLEDGMENTS
of AU events by measuring the amount of overlap in th?he work was
resulting labels. Additionally, our sample selection &gy Carne
could be easily applied to other classifiers such as SV
or Gaussian Processes. Moreover, we plan to explore
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