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Abstract—Automatic facial action unit detection from video is a long standing problem in facial expression analysis. Research
has focused on registration, choice of features, and classifiers. A relatively neglected problem is the choice of training images.
Nearly all previous work uses one or the other of two standard approaches. One approach assigns peak frames to the positive
class and frames associated with other actions to the negative class. This approach maximizes differences between positive
and negative classes, but results in a large imbalance between them, especially for infrequent AUs. The other approach reduces
imbalance in class membership by including all target frames from onsets to offsets in the positive class. However, because
frames near onsets and offsets often differ little from those that precede them, this approach can dramatically increase false
positives. We propose a novel alternative, dynamic cascades with bidirectional bootstrapping (DCBB) to select training samples.
Using an iterative approach, DCBB optimally selects positive and negative samples in the training data. Using Cascade Adaboost
as basic classifier, DCBB exploits the advantages of feature selection, efficiency, and robustness of Cascade Adaboost. To
provide a real-world test, we used the RU-FACS (a.k.a. M3) database of non-posed behavior recorded during interviews. For
most tested action units, DCBB improved AU detection relative to alternative approaches.

Index Terms—Facial expression analysis, action unit detection, FACS, dynamic cascade boosting, bidirectional bootstrapping.
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1 INTRODUCTION

The face is one of the most powerful channels of nonver-
bal communication. Facial expression provides cues about
emotional response, regulates interpersonal behavior, and
communicates aspects of psychopathology. To make use
of the information afforded by facial expression, Ekman
and Friesen [1] proposed the Facial Action Coding System
(FACS). FACS segments the visible effects of facial muscle
activation into “action units (AUs)”. Each action unit is
related to one or more facial muscles. These anatomic
units may be combined to represent more molar facial
expressions. Emotion-specified joy, for instance, is repre-
sented by the combination of AU6 (cheek raiser, which
results from contraction of the orbicularis occuli muscle)
and AU12 (lip-corner puller, which results from contraction
of the zygomatic major muscle). The FACS taxonomy
was developed by manually observing live and recorded
facial behavior and by recording the electrical activity of
underlying facial muscles [2]. Because of its descriptive
power, FACS has become the state of the art in manual
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Fig. 1. Example of strong, subtle, and ambiguous
samples of FACS action unit 12. Strong samples typ-
ically correspond to the peak, or maximum intensity,
and ambiguous frames correspond to AU onset and
offset and frames proximal to them. Subtle samples are
located between strong and ambiguous ones. Using
an iterative algorithm, DCBB selects positive samples
such that the detection accuracy is optimized during
training.

measurement of facial expression [3] and is widely used
in studies of spontaneous facial behavior [4]. For these
and related reasons, much effort in automatic facial image
analysis seeks to automatically recognize FACS action units
[5–9].

Automatic detection of AUs from video is a challenging
problem for several reasons. Non-frontal pose and mod-
erate to large head motion make facial image registration
difficult, large variability occurs in the temporal scale of
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facial gestures, individual differences occur in shape and
appearance of facial features, many facial actions are inher-
ently subtle, and the number of possible combinations of
40+ individual action units numbers in the thousands. More
than 7000 action unit combinations have been observed
[4]. Previous efforts at AU detection have emphasized
types of features and classifiers. Features have included
shape and various appearance features, such as grayscale
pixels, edges, and appearance (e.g., canonical appearance,
Gabor, and SIFT descriptors). Classifiers have included
support vector machines (SVM) [10], boosting [11],
hidden Markov models (HMM) [12] and dynamic Bayesian
networks (DBN) [13] review much of this literature.

By contrast, little attention has been paid to the as-
signment of video frames to positive and negative classes.
Typically, assignment has been done in one of two ways.
One assigns to the positive class those frames at the peak of
each AU or proximal to it. Peak refers to frame of maximum
intensity of an action unit between when it begins (“onset”)
and when it ends (“offset”). The negative class then is
chosen by randomly sampling other AUs, including AU
0 or neutral. This approach suffers at least two drawbacks:
(1) the number of training examples will often be small,
which results in a large imbalance between positive and
negative frames; and (2) peak frames may provide too little
variability to achieve good generalization. These problems
may be circumvented by following an alternative approach;
that is to include all frames from onset to offset in the pos-
itive class. This approach improves the ratio of positive to
negative frames and increases representativeness of positive
examples. The downside is confusability of positive and
negative classes. Onset and offset frames and many of those
proximal or even further from them may be indistinguisable
from the negative class. As a consequence, the number of
false positives can dramatically increase.

To address these issues, we propose an extension of Ad-
aboost [14–16] called Dynamic Cascades with Bidirectional
Bootstrapping (DCBB). Fig. 1 illustrates the main idea.
Having manually annotated FACS data with onset, peak,
and offset, the question we address is how best to select the
AU frames for the positive and negative class. Preliminary
results for this work has been presented in [17].

In contrast to previous approaches to class assignment,
DCBB automatically distinguishes between strong, subtle,
and ambiguous frames for AU events of different intensity.
Strong frames correspond to the peaks and the ones proxi-
mal to them; ambiguous frames are proximal to onsets and
offsets; subtle frames occur between strong and ambiguous
ones. Strong and subtle frames are assigned to the positive
class. By distinguishing between these three types, DCBB
maximizes the number of positive frames while reducing
confusability between positive and negative classes.

For high intensity AUs in comparison with low intensity
AUs, the algorithm will select more frames for the positive
class. Some of these frames may be similar in intensity
to low intensity AUs. Similarly, if multiple peaks occur be-
tween an onset and offset, DCBB assigns multiple segments
to the positive class. See Fig. 1 for an example. Strong

and subtle but not ambiguous AU frames are assigned to
the positive class. For the negative class, DCBB proposes
a mechanism, which is similar as Cascade AdaBoost to
optimize that as well, the principles are that the weight
of misclassified negative class will be increased during
training step of each weak classifier, and don’t learning to
much at each cascade stage. Moreover, the positive class is
changed at each iteration, while the corresponding negative
class is reselected again.

In experiments, we evaluated the validity of our approach
to class assignment and selection of features. In the first
experiment, we illustrate the importance of selecting the
right positive samples for action unit detection. In the
second we compare DCBB with standard approaches based
on SVM and AdaBoost.

The rest of the paper is organized as follows. Section
2 reviews previous work on automatic methods for action
unit detection. Section3 describes pre-processing steps
for alignment and feature extraction. Section4 gives de-
tails of our proposed DCBB method. Section5 provides
experimental results in non-posed, naturalistic video. For
experimental evaluation, we used FACS-coded interviews
from the RU-FACS (a.k.a. M3) database [18, 19]. For
most action units tested, DCBB outperformed alternative
approaches.

2 PREVIOUS WORK

This section describes previous work on FACS and on
automatic detection of AUs from video.

2.1 FACS

The Facial Action Coding System (FACS) [1] is a compre-
hensive, anatomically-based system for measuring nearly
all visually discernible facial movement. FACS describes
facial activity on the basis of 44 unique action units(AUs),
as well as several categories of head and eye positions and
movements. Facial movement is thus described in terms of
constituent components, or AUs. Any facial expression may
be represented as a single AU or a combination of AUs.
For example, the felt, or Duchenne, smile is indicated by
movement of the zygomatic major (AU12) and orbicularis
oculi, pars lateralis (AU6). FACS is recognized as the
most comprehensive and objective means for measuring
facial movement currently available, and it has become
the standard for facial measurement in behavioral research
in psychology and related fields. FACS coding procedures
allow for coding of the intensity of each facial action on a 5-
point intensity scale, which provides a metric for the degree
of muscular contraction and for measurement of the timing
of facial actions. FACS scoring produces a list of AU-based
descriptions of each facial event in a video record. Fig. 2
shows an example for AU12.

2.2 Automatic FACS detection from video

Two main streams in the current research on automatic
analysis of facial expressions consider emotion-specified
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Fig. 2. FACS coding typically involves frame-by-frame
inspection of the video, paying close attention to tran-
sient cues such as wrinkles, bulges, and furrows to
determine which facial action units have occurred and
their intensity. Full labeling requires marking onset,
peak and offset and may include annotating changes
in intensity as well. Left to right, evolution of an AU 12
(involved in smiling), from onset, peak, to offset.

expressions (e.g., happy or sad) and anatomically based
facial actions (e.g., FACS). The pioneering work of Black
and Yacoob [20] recognizes facial expressions by fitting
local parametric motion models to regions of the face and
then feeding the resulting parameters to a nearest neighbor
classifier for expression recognition. De la Torre et al. [21]
used condensation and appearance models to simultane-
ously track and recognize facial expression. Chang et al.
[22] learned a low dimensional Lipschitz embedding to
build a manifold of shape variation across several people
and then used I-condensation to simultaneously track and
recognize expressions. Lee and Elgammal [23] employed
multi-linear models to construct a non-linear manifold that
factorizes identity from expression.

Several promising prototype systems were reported that
can recognize deliberately produced AUs in either near
frontal view face images (Bartlett et al., [24]; Tian et
al., [8]; Pantic & Rothkrantz, [25]) or profile view face
images (Pantic & Patras, [26]). Although high scores have
been achieved on posed facial action behavior [13, 27, 28],
accuracy tends to be lower in the few studies that have
tested classifiers on non-posed facial behavior [11, 29, 30].
In non-posed facial behavior, non-frontal views and rigid
head motion are common, and action units are often less
intense, have different timing, and occur in complex com-
binations [31]. These factors have been found to reduce AU
detection accuracy [32]. Non-posed facial behavior is more
representative of facial actions that occur in real life, which
is our focus in the current paper.

Most work in automatic analysis of facial expressions
differs in the choice of facial features, representations,
and classifiers. Barlett et al. [11, 19, 24] used SVM and
AdaBoost in texture-based image representations to recog-
nize 20 action units in near-frontal posed and non-posed
facial behavior. Valstar and Pantic [26, 33, 34] proposed a
system that enables fully automated robust facial expression
recognition and temporal segmentation of onset, peak, and
offset from video of mostly frontal faces. The system
included particle filtering to track facial features, Gabor-
based representations, and a combination of SVM and
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Fig. 3. AAM tracking across several frames

HMM to temporally segment and recognize action units.
Lucey et al. [30, 35] compared the use of different shape
and appearance representations and different registration
mechanisms for AU detection.

Tong et al. [13] used Dynamic Bayesian Networks with
appearance features to detect facial action units in posed
facial behavior. The correlation among action units served
as priors in action unit detection. Comprehensive reviews
of automatic facial coding may be found in [5–8, 36].

To the best of our knowledge, no previous work has
considered strategies for selecting training samples or eval-
uated their importance in AU detection. This is the first
paper to propose an approach to optimize the selection of
positive and negative training samples. Our findings suggest
that a principled approach to optimizing the selection of
training samples increases accuracy of AU detection relative
to current state of the art.

3 FACIAL FEATURE TRACKING AND IMAGE
FEATURES

This section describes the system for facial feature tracking
using active appearance models (AAMs), and extraction
and representation of shape and appearance features for
input to the classifiers.

3.1 Facial tracking and alignment

Over the last decade, appearance models have become
increasingly important in computer vision and graphics.
Parameterized Appearance Models (PAMs) (e.g. Active
Appearance Models [37–39] and Morphable Models [40])
have been proven useful for detection, facial feature align-
ment, and face synthesis. In particular, Active Appearance
Models (AAMs) have proven an excellent tool for aligning
facial features with respect to a shape and appearance
model. In our case, the AAM is composed of66 landmarks
that deform to fit perturbations in facial features. Person-
specific models were trained on approximately5% of the
video [39]. Fig. 3 shows an example of AAM tracking
of facial features in a single subject from the RU-FACS
[18, 19] video data-set.

After tracking facial features using AAM, a similarity
transform registers facial features with respect to an average
face (see middle column in Fig. 4). In the experiments
reported here, the face was normalized to212×212 pixels.
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Fig. 4. Two-step alignment

To extract appearance representations in areas that have
not been explicitly tracked (e.g. nasolabial furrow), we
use a backward piece-wise affine warp with Delaunay
triangulation to set up the correspondence. Fig. 4 shows the
two step process for registering the face to a canonical pose
for AU detection. Purple squares represent tracked points
and blue dots represent meaningful non-tracked points. The
dashed blue line shows the mapping between a point in
the mean shape and its corresponding point in the original
image. This two-step registration proves important toward
detecting low intensity action units.

3.2 Appearance features

Appearance features for AU detection [11, 41] outper-
formed shape only features for some action units; see Lucey
et al. [35, 42, 43] for a comparison. In this section, we
explore the use of the SIFT [44] descriptors as appearance
features.

Given feature points tracked with AAMs, SIFT descrip-
tors are first computed around the points of interest. SIFT
descriptors are computed from the gradient vector for each
pixel in the neighborhood to build a normalized histogram
of gradient directions. For each pixel within a subregion,
SIFT descriptors add the pixel’s gradient vector to a his-
togram of gradient directions by quantizing each orientation
to one of 8 directions and weighting the contribution of each
vector by its magnitude.

4 DYNAMIC CASCADES WITH BIDIREC-
TIONAL BOOTSTRAPPING (DCBB)
This section explores the use of a dynamic boosting tech-
niques to select the positive and negative samples that
improve detection performance in AU detection.

Bootstrapping [45] is a resampling method that is com-
patible with many learning algorithms. During the boot-
strapping process, the active sets of negative examples
are extended by examples that were misclassified by the
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Fig. 5. Bidirectional Bootstrapping.

current classifier. In this section, we propose Bidirectional
Bootstrapping, a method to bootstrap both positive and
negative samples.

Bidirectional Bootstrapping beings by selecting as posi-
tive samples only the peak frames and uses Classification
and Regression Tree (CART) [46] as a weak classifier (Ini-
tial learning in Section4.1). After this initial training step,
Bidirectional Bootstrapping extends the positive samples
from the peak frames to proximal frames and redefines new
provisional positive and negative training sets (Dynamic
learning in Section4.2). The positive set is extended by in-
cluding samples that are classified correctly by the previous
strong classifier (Cascade AdaBoost in our algorithm), the
negative set is extended by examples misclassified by the
same strong classifier, thus emphasizing negative samples
close to the decision boundary. With the bootstrapping of
positive samples, the generalization ability of the classifier
is gradually enhanced. The active positive and negative
sets then are used as an input to the CART that returns
a hypothesis, which updates the weights in the manner of
Gentle AdaBoost [47], and the training continues until the
variation between previous and current Cascade AdaBoost
become smaller than a defined threshold. Fig. 5 illustrates
the process. In Fig. 5P is potential positive data set,Q is
negative data set (Negative Pool),P0 is the positive set in
Initial learning step,Pw is the active positive set in each
iteration, the size of solid circle illustrate the intensity of
AU samples, the right ellipses illustrate the spreading of
dynamic positive set. See details in Algorithm1 and2.

4.1 Initial training step

This section explains the initial training step for DCBB.
In the initial training step we select the peaks and the two
neighboring samples as positive samples, and a randomly
selected sample of other AUs and non-AUs as negative
samples. As in standard AdaBoost [14], we define the false
positive target ratio (Fr), the maximum acceptable false
positive ratio per cascade stage (fr), and the minimum
acceptable true positive ratio per cascade stage (dr). The
initial training step applies standard AdaBoost using CART
[46] as a weak classifier as summarized in Algorithm 1.
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Input:
• Positive data setP0 (contains AU peak framesp and

p± 1);
• Negative data setQ (contains other AUs and non-

AUs);
• Target false positive ratioFr;
• Maximum acceptable false positive ratio per cascade

stagefr;
• Minimum acceptable true positive ratio per cascade

stagedr;
Initialize:

• Current cascade stage numbert = 0;
• Current overall cascade classifier’s true positive ratio

Dt = 1.0;
• Current overall cascade classifier’s false positive ratio

Ft = 1.0;
• S0 = {P0, Q0} is the initial working set,Q0 ⊂ Q.

The number of positive samples isNp. The number
of negative samples isNq = Np ×R0, R0 = 8;

While Ft > Fr

1) t = t + 1;ft = 1.0; Normalize the weightsωt,i for
each samplexi to guarantee thatωt = {ωt,i} is a
distribution.

2) While ft > fr
a) For each featureφm, train a weak classifier on

S0 and find the best featureφi (the one with the
minimum classification error).

b) Add the featureφi into the strong classifierHt,
update the weight in Gentle AdaBoost manner.

c) Evaluate onS0 with the current strong classifier
Ht, adjust the rejection threshold under the
constraint that the true positive ratio does not
drop belowdr.

d) Decrease threshold untildr is reached.
e) Computeft under this threshold.

END While
3) Ft+1 = Ft × ft; Dt+1 = Dt × dr; keep inQ0 the

negative samples that the current strong classifierHt

misclassified (current false positive samples), record
its size asKfq.

4) Use the detectorHt to bootstrap false positive sam-
ples from negativeQ randomly and repeat until the
negative working set hasNq samples.

END While
Output:

A t-levels cascade where each level has a strong boosted
classifier with a set of rejection thresholds for each weak
classifier.

Algorithm 1: Initial learning

4.2 Dynamic learning

Once a cascade of peak frame detectors is learned in the
initial learning stage (Section4.1), we are able to enlarge
the positive set to increase the discriminative performance
of the whole classifier. The AU frames detector will become

stronger as new AU positive samples are added for training.
We added additional constraint to avoid adding ambiguous
AU frames to the dynamic positive set. The algorithm is
summarized in Algorithm 2.

Input

• Cascade detectorH0, from the Initial Learning step;
• Dynamic working setSD = {PD, QD};
• All the frames in this action unit are represented as

potential positive samples in the setP = {Ps, Pv}.
Ps contains the strong positive samples,P0 contains
peak related samples described above,P0 ∈ Ps. Pv

contains ambiguous positive samples;
• A large negative data setQ contains all other AUs and

non-AUs and its size isNa.

Update positive working set by spreading within P and
update negative working set by bootstrap in Q with the
dynamic cascade learning process:

Initialize: We set the value ofNp as the size ofP0. The size
of the old positive data set isNp old = 0 and the diffusion
stage ist = 1.

While (Np −Np old)/Np > 0.1

1) AU Positive Spreading: Np old = Np. Use the
current detector on the data setP to potentially
add more positive samples,Psp are all the positive
samples that are determined by the cascade classifier
Ht−1.

2) Hard Constrain in spreading: k indexes the current
AU event andi is the index to the current frame in
this AU event. Calculate the similarity values (Eq.
1) between the peak frame in eventk and all peak
frames with the lowest intensity value ‘A’, and denote
the average similarity value withSk. Calculate the
similarity value between framei and peak frame in
eventk, its value isSki, if Ski < 0.5× Sk, framei
will be excluded fromPsp.

3) After the above step, the remaining positive work set
is Pw = Psp, Np = size of Psp. Using theHt−1

detector to bootstrap false positive samples from the
negative setQ until the negative working setQw has
Nq = β×R0 ×Na samples,Na is different in AUs.

4) Train the cascade classifierHt with the dynamic
working set{Pw, Qw}. As Rt varies, the maximum
acceptable false positive ratio per cascade stagefmr

also becomes smaller (Eq. 2).
5) t = t+ 1; emptyPw andQw.

END While

Algorithm 2: Dynamic learning

The function to measure the similarity between the peak
and other frames is the Radial Basis function between the
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appearance representation of two frames:

Sk =
1

n

n
∑

j=1

Sim(fk,fj), j ∈ [1 : n]

Sik = Sim(fi,fk) = e−(Dist(i,k)/max(Dist(:,k)))2

Dist(i, k) =

[ m
∑

j=1

(fkj − fij)
2

]1/2

, j ∈ [1 : m] (1)

n refers to the total number of AU instances with intensity
‘A’, and m is the length of the AU features.

The dynamic positive working set becomes larger but
the negative samples pool is finite, sofmr

needs to be
changed dynamically. Moreover,Nq is function of Na

because different AU has different size of the negative
samples pool. Some AUs (e.g., AU12) are likely to occur
more often than others. Rather than tuning these thresholds
one by one, we assume that the false positive ratiofmr

changes exponentially in each staget, that is:

fmr
= fr × (1− e−αRt) (2)

In our experimental set up, we setα as 0.2 andβ as
0.04 respectively. We found empirically that those values
are suitable for all the AUs to avoid lack of useful negative
samples in RU-FACS database. After the spreading stage,
the ratio between positive and negative samples becomes
balanced, except for some rare AUs (e.g., AU4, AU10)
where the unbalance is due to the scarceness of positive
frames in the database.

5 EXPERIMENTS

DCBB iteratively samples training frames and then uses
Cascade AdaBoost for classification. To evaluate the effi-
cacy of iteratively sampling training samples, Experiment
1 compared DCBB with the two standard approaches.
They are selecting only peaks and alternatively selecting
all frames between onsets and offsets. Experiment 1 thus
evaluated whether iteratively sampling training images in-
creased AU detection. Experiment 2 evaluated the efficacy
of Cascade AdaBoost relative to SVM when iteratively
sampling training samples. In our implementation, DCBB
uses Cascade AdaBoost, but other classifiers might be used
instead. Experiment 2 informs whether better results might
be achieved using SVM. Experiment 3 explored the use of
three appearance descriptions (Gabor, SIFT and DAISY) in
conjunction with DCBB (Cascade Adaboost as classifier).

5.1 Database

The three experiments all used RU-FACS (a.k.a. M3)
database [18, 19]. RU-FACS consists of video-recorded
interviews of 34 men and women of varying ethnicity.
Interviews were approximately two minutes in duration.
Video from five subjects could not be processed for tech-
nical reasons (e.g., noisy video), which resulted in usable
data from 29 participants. Meta-data included manual FACS
codes for AU onsets, peaks and offsets. Because some
AUs occurred too infrequently, we selected the 13 AUs

that occur more than20 times in the database (i.e. 20
or more peaks). These AUs are: AU1, AU2, AU4, AU5,
AU6, AU7, AU10, AU12, AU14, AU15, AU17, AU18,
and AU23. Fig. 6 shows the number of frames that each
AU occurred and their average duration. Fig. 7 illustrates
a representative time series for several AUs from subject
S010. Blue asterisks represent onsets, red circles peak
frames, and green plus signs the offset frames. In each
experiment, we randomly selected19 subjects for training
and the other10 subjects for testing.

Fig. 6. Top) Frame number from onset to offset for the
13 most frequent AUs in the M3 dataset. Bottom) The
average duration of AU in frames.

5.2 Experiment 1: Iteratively sampling training im-
ages with DCBB

This experiment illustrates the effect of iteratively selecting
positive and negative samples (i.e. frames) while training
the Cascade AdaBoost. As a sample selection mechanism
on top of the Cascade AdaBoost, DCBB could be applied
to other classifiers as well. The experiment investigates
whether the iteratively selecting training samples strategy
is better than the strategy using only peak AU frames or the
strategy using all the AU frames as positive samples. For
different positive samples assignments, the negative sam-
ples are defined by the method used in Cascade AdaBoost.

We apply the DCBB method, described in Section4 and
use appearance features based on SIFT descriptors (Section
3). For all AUs the SIFT descriptors are built using a square
of 48 × 48 pixels for twenty feature points for the lower
face AUs or sixteen feature points for upper face (see Fig.
4). We trained13 dynamic cascade classifiers, one for each
AU, as described in Section4.2, using a one versus all
scheme for each AU.

Top of Fig. 8 shows the manual labeling for AU12 of the
subjectS015. We can see eight instances of AU12 with
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Fig. 7. AUs characteristics in subject S010, duration, intensity, onset, offset, peak.(frames as unit in X axis, Y
axis is the intensity of AUs)
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Fig. 8. The spreading of positive samples during each dynamic training step for AU12. See text for the
explanation of the graphics.

varying intensities ranging from A (weak) to E (strong).
The black curve in bottom figures represent the similarity
(eq. 1) between the peak and the neighboring frames. The
peak is the maximum of the curve. The positive samples
in the first step are represented by green asterisks, in the
second iteration by red crosses, in the third iteration by
blue crosses, and in the final iteration by black circles.
Observe that in the case of high peak intensity, subfigures
3 and 8 (top right number in the similarity plots), the final
selected positive samples contain areas of low similarity
values. When AU intensity is low, subfigure 7, positive
samples are selected if they have a high similarity with the

peak, which reduces to the number of false positives. The
ellipses and rectangles in the figures contain frames that
are selected as positive samples, and correspond to strong
and subtle AUs defined above. The triangles correspond to
frames between the onset and offset that are not selected
as positive samples, and represent ambiguous AUs in Fig.
1.

Table 1 shows the number of frames at each level of
intensity and the percentage of each intensity that were
selected as positive by DCBB in the training set. The letters
‘A-E’ in left column refers to the level of AU intensities,
The ‘Num’ and ‘Pct’ in the top rows refers to the number
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TABLE 1
Number of frames at each level of intensity and the percentage of each intensity that were selected as positive

by DCBB

AU1 AU2 AU4 AU5 AU6 AU7
Num Pct Num Pct Num Pct Num Pct Num Pct Num Pct

A 986 46.3% 845 43.6% 325 37.1% 293 86.4% 119 40.2% 98 47.9%

B 3513 83.3% 3130 79.4% 912 70.4% 371 97.7% 1511 71.3% 705 93.4%

C 3645 90.9% 3241 91.3% 439 83.8% 110 99.7% 1851 87.8% 1388 97.9%

D 2312 90.3% 1753 95.6% 73 79.6% 0 NaN 1128 84.2% 537 98.7%

E 151 99.3% 601 96.5% 0 NaN 23 96.6% 118 91.4% 153 98.5%

AU10 AU12 AU14 AU15 AU17 AU18 AU23
Num Pct Num Pct Num Pct Num Pct Num Pct Num Pct Num Pct

A 367 61.3% 1561 38.1% 309 49.7% 402 72.6% 445 34.1% 134 87.4% 25 77.0%

B 2131 90.8% 4293 73.3% 2240 93.9% 1053 89.7% 2553 70.1% 665 99.2% 190 87.8%

C 1066 92.8% 5432 82.0% 1040 95.6% 611 97.4% 1644 76.4% 240 98.7% 198 97.3%

D 572 88.6% 2234 83.5% 268 96.8% 68 98.6% 966 85.3% 83 98.6% 166 98.9%

E 0 NaN 1323 92.4% 232 94.3% 0 NaN 226 80.2% 0 NaN 361 99.1%

of AU frames at each level of intensity and the percentage
of frames that were selected as positive examples at the
last iteration of dynamic learning step, respectively. If there
were no AU frames in one level of intensity, the ‘Pct’ value
will be ‘NaN’. From this table, we can see that DCBB
emphasizes intensity levels ‘C’, ‘D’ and ‘E’.

Fig. 9 shows the Receiver-Operator Characteristic (ROC)
curves for testing data (subjects not in the training) using
DCBB. The ROC curves were obtained by plotting true
positives ratios against false positives ratios for different
decision threshold values of the classifier. Results are shown
for each AU. In each figure, five or six ROC curves are
shown:initial learning corresponds to training on only the
peaks (which is same as Cascade Adaboost without the
DCBB strategy);spread xcorresponds to running DCBB
x times; All denotes using all frames between onset and
offset. The first number between lines| in Fig. 9 denotes
the area under the ROC; the second number is the size of
positive samples in the testing dataset; and separated by/ is
the number of negative samples in the testing dataset. The
third number denotes the size of positive samples in training
working sets and separated by/ the total frames of target
AU in training data sets. AU5 has the minimum number
of training examples and AU12 has the largest number of
examples. We can observed that the area under the ROC for
frame-by-frame detection improved gradually during each
learning stage; performance improved faster for AU4, AU5,
AU10, AU14, AU15, AU17, AU18, AU23 than for AU1,
AU2, AU6 and AU12 during Dynamic learning. Note that
using all the frames between the onset and offset (‘All’)
typically degraded detection performance. The table below
Fig. 9 shows the areas under the ROC when only peak
is selected for training, when all frames are selected and
DCBB is used. DCBB outperformed both alternatives.

Two parameters in the DCBB algorithms were manually
tuned and remained the same in all experiments. One
parameter specifies the minimum similarity value below
which no positive sample will be selected. The threshold is
based on the similarity equation (eq. 1). It was set at 0.5
after preliminary testing found results stable within a range

of 0.2 to 0.6. The second parameter is the stopping criterion.
We consider that the algorithm has converged when the
number of new positive samples between iterations is less
than10%. In preliminary experiments, values less than15%
failed to change detection performance as indicated by ROC
curves. Using the stopping criterion, the algorithm typically
converged within three or four iterations.

5.3 Experiment 2: Comparing Cascade Adaboost
and Support Vector Machine (SVM) when used with
iteratively sampled training frames

SVM and AdaBoost are two commonly used classifiers
for AU detection. In this experiment, we compared AU
detection by DCBB (Cascade AdaBoost as classifier) and
SVM using shape and appearance features. We found that
for both types of features (i.e. shape and appearance),
DCBB achieved more accurate AU detection.

For compatibility with the previous experiment, data
from the same19 subjects as above were used for training
and the other10 for testing. Results are reported for the
13 most frequently observed AU. Other AU occurred too
infrequently (i.e. fewer than 20 occurrences) to obtain
reliable results and thus were omitted. Classifiers for each
AU were trained using a one versus-all strategy. The ROC
curves for the13 AUs are shown in Fig. 10. For each
AU, six curves are shown, one for each combination of
training features and classifiers. ‘App+DCBB’ refers to
DCBB using appearance features; ‘Peak+Shp+SVM’ refers
to SVM using shape features trained on the peak frames
(and two adjacent frames) [10]; ‘Peak+App+SVM’ [10]
refers to train a SVM using appearance features trained on
the peak frame (and two adjacent frames); ‘All+Shp+SVM’
refers to SVM using shape features trained on all frames
between onset and offset; ‘All+PCA+App+SVM’ refers to
SVM using appearance features (after PCA processing)
trained on all frames between onset and offset, here, in
order to computationally scale in memory space, we re-
duced the dimensionality of the appearance features using
principal component analysis (PCA) that preserves98%
of the energy. ‘Peak+App+Cascade Boost’ refers to use
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Fig. 9. The ROCs improve with the spreading of positive samples: See text for the explanation of Peak, Spread
x and All.
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Fig. 10. ROC curve for 13 AUs using six different methods: AU peak frames with shape features and
SVM(Peak+Shp+SVM); all frames between onset and offset with shape features and SVM (All+Shp+SVM); AU
peak frames with appearance features and SVM (Peak+App+SVM); sampling 1 frame in every 4 frames between
onset and offset with PCA to reduce appearance dimensionality and SVM (All+PCA+App+SVM); AU peak
frames with appearance features and Cascade AdaBoost(Peak+App+Cascade Boost); DCBB with appearance
features(DCBB).
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the peak frame with appearance features and Cascade
AdaBoost [14] classifier (will be equivalent to the first
step in DCBB). As can be observed in the figure, DCBB
outperformed SVM for all AUs (except AU18) using either
shape or appearance when training in the peak (and two
adjacent frames). When training the SVM with shape and
using all samples, the DCBB performed better for eleven
out of thirteen AUs. In the SVM training, the negative
samples were selected randomly (but the same negative
samples when using either shape or appearance features).
The ratio between positive and negative samples was fixed
to 30. Compared with the Cascade AdaBoost (first step in
DCBB that only uses the peak and two neighbor samples),
DCBB improved the performance in all AUs.

Interestingly, the performance for AU4, AU5, AU14,
AU18 using the method ‘All+PCA+App+SVM’ was bet-
ter than ‘DCBB’. ‘All+PCA+App+SVM’ uses appearance
features and all samples between onset and offset. All
parameters in SVM were selected using cross-validation. It
is interesting to observe that AU4, AU5, AU14, AU15 and
AU18 are the AUs that have very few total training samples
(only 1749 total frames for AU4,797 frames for AU5,4089
frames for AU14,2134 frames for AU15,1122 frames
for AU18), and when having very little training data the
classifier can benefit from using all samples. Moreover, the
PCA step can help to remove noise. It is worth pointing out
that best results were achieved by the classifiers using ap-
pearance (SIFT) instead of shape features, which suggests
SIFT may be more robust to residual head pose variation
in the normalized images. Using unoptimized MATLAB
code, training DCBB typically required one to three hours
depending on the AU and number of training samples.

5.4 Experiment 3: Appearance descriptors for
DCBB

Our findings and those of others suggest that appearance
features are more robust than shape features in unposed
video with small to moderate head motion. In the work
described above, we used SIFT to represent appearance. In
this section, we compare SIFT to two alternative appearance
representations, DAISY and Gabor [24, 41].

Similar in spirit to SIFT descriptors, DAISY descriptors
are an efficient feature descriptor based on histograms. They
have frequently been used to match stereo images [48].
DAISY descriptors use circular grids instead of the regular
grids in SIFT; the former have been found to have better
localization properties [49] and to outperform many state-
of-the-art feature descriptors for sparse point matching [50].
At each pixel, DAISY builds a vector made of values
from the convolved orientation maps located on concentric
circles centered on the location. The amount of Gaussian
smoothing is proportional to the radius of the circles.

In the following experiment, we compare the perfor-
mance on AU detection for three appearance representa-
tions, Gabor, SIFT and DAISY using DCBB with Cas-
cade Adaboost. Each was computed at the same locations
(twenty feature points in lower face, see Fig. 12). The same

19 subjects as before were used for training and10 for
testing. Fig. 11 shows the ROC detection curves for the
lower AUs using Gabor filters at eight different orientations
and five different scales, DAISY [50] and SIFT [44].
For most of AUs, ROC curves for SIFT and DAISY were
comparable. With respect to processing speed, DAISY was
faster.
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Fig. 12. Using different number of feature points

An important parameter largely conditioning the perfor-
mance of appearance-based descriptors is the number and
location of features selected to build the representation.For
computational considerations it is impractical to build ap-
pearance representations in all possible regions of interest.
To evaluate the influence of number of regions selected,
we varied the number of regions, or points, in the mouth
area from 2 to 20. As shown in Fig. 12, large red circles
represent the location of two feature regions, adding blue
squares and red circles increases the number to12; adding
purple triangles and small black squares increases the num-
ber to18 and20 respectively. Comparing results for2, 12,
18, and20 regions, or points, performance was consistent
with intuition. While there were some exceptions, in general
performance improved monotonically with the number of
regions (Fig. 12).

6 CONCLUSIONS

An unexplored problem and critical to the success of
automatic action unit detection is the selection of the
positive and negative training samples. This paper proposes
dynamic cascade bidirectional bootstrapping (DCBB) for
this purpose. With few exceptions, DCBB achieved better
detection performance than the standard approaches of
selecting either peak frames or all frames between the
onsets and offsets. We also compared three commonly
used appearance features and the number of regions of
interests or points to which they were applied. We found
that use of SIFT and DAISY improved accuracy relative to
Gabor under same number of sampling points. For all three,
increasing the number of regions or points monotonically
improved performance. These findings suggest that DCBB
when used with appearance features, especially SIFT or
DAISY, can improve AU detection relative to standard
selection methods for selecting training samples.
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Fig. 11. Comparison of ROC curves for 13 AUs using different appearance representations based on SIFT,
DAISY, and Gabor representations

Several issues remain unsolved. The final Cascade Ad-
aboost classifier has automatically selected the features and
training samples that improve classification performance in
the training data. During the iterative training, we have an
intermediate set of classifiers (usually from3 to 5) that
could potentially be used to model the dynamic pattern
of AU events by measuring the amount of overlap in the
resulting labels. Additionally, our sample selection strategy
could be easily applied to other classifiers such as SVM
or Gaussian Processes. Moreover, we plan to explore the

use of these techniques in other computer vision problems
such activity recognition, where the selection of the positive
and negative samples might play an important role in the
results.
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