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a b s t r a c t

Vomiting is a common side effect of cancer chemotherapy and many drug treatments and diseases. In

animal studies, the measurement of vomiting usually requires direct observation, which is time consum-

ing and often lacks temporal precision. Musk shrews have been used to study the neurobiology of emesis

and have a rapid emetic episode (∼1 s for a sequence of retching and expulsion). The aim of the current

study was to develop a method to automatically detect and characterize emetic episodes induced by the

cancer chemotherapy agent cisplatin. The body contour in each video frame was tracked and normalized

to a parameterized shape basis. The tracked shape was projected to a feature space that maximized the

shape variations in the consecutive frames during retching. The resulting one dimensional projection was

sufficient to detect most emetic episodes in the acute (peak at 2 h) and delayed (peak at 54 h) phases after

cisplatin treatment. Emetic episodes were relatively invariant in the number of retches (∼6.2), duration

(∼1.2 s), inter-retch interval (∼198 ms), and amplitude during the 72 h after cisplatin treatment. This

approach should open a new vista into emesis research to permit tracking and analysis of emesis in a

small animal model and facilitate the development of new antiemetic therapies. These results also yield

a better understanding of the brain’s central pattern generator for emesis and indicate that the retching

response in the musk shrew (at ∼5.4 Hz) is the fastest ever recorded in a free-moving animal.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Vomiting and nausea often occur in patients with chronic dis-

ease, such as cancer, AIDS, and gastrointestinal disease, and can

contribute to reductions in appetite, quality of life, and adherence

to treatment plans that involve medicines with these side effects

(Glare et al., 2004; Murakami et al., 2008; Norval, 2004). Clini-

cally, vomiting and nausea are frequently observed with the use of

cytotoxic chemotherapy agents (e.g., Ettinger et al., 2008; Hesketh,

2008). Antiemetic drugs are not always effective for controlling

emesis and they can affect the efficacy of other treatments, pose

potential health risks, and are expensive (Aapro, 2002; Candiotti

et al., 2007; Llanes et al., 2006; Parsons et al., 2000; Sano et al.,

2005; Twycross, 1994; Zhang et al., 2006a,b). Therefore, it is impor-

tant to find better ways to control these side effects. However,
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many important aspects of the neural pathways and mechanisms

for emesis are poorly understood (e.g., Horn, 2008).

In recent years, there has been an increased focus on the use of

small animal models in emesis research, particularly musk shrews

(Suncus murinus) (e.g., Horn et al., 2010b; Parker et al., 2009; Percie

du Sert et al., 2010; Yamamoto et al., 2009). Notably rodents, includ-

ing mice and rats, lack a vomiting response (Andrews and Horn,

2006; Andrews, 1995; Horn et al., 2010a). The musk shrew has

distinct advantages as a research model, including a significant

database on neuroanatomy, pharmacology, genetics, and a broad

range of emetic and antiemetic drugs affecting this species (e.g.,

Andrews et al., 2000; Gardner et al., 1995; Hu et al., 2001, 2003,

2007; Ito et al., 1995, 2002, 2003; Ito and Seki, 1998; Matsuki et al.,

1993, 1988; Mutoh et al., 1992; Okada et al., 1994; Sam et al., 2003;

Torii et al., 1993, 1994, 1991; Won et al., 1998a,b). Musk shrews

can be easily observed and/or videotaped for behavioral responses

(Sam et al., 2003). The brain of this species is sufficiently large

and well characterized to analyze nuclear groups (Andrews et al.,

2000; Gill et al., 1998; Ito et al., 2002, 2003, 2005; Ito and Seki,

1998). In addition, an in situ brainstem preparation for assessing

the emetic circuitry is available (Smith et al., 2002, 2001). Equally

0165-0270/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
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important is the fact that this species, slightly larger than a mouse

(25–85 g), can be efficiently maintained in large numbers (in con-

trast to other emesis competent species like ferrets, cats, dogs and

pigs) and are easily bred and handled. This convenient body size

greatly facilitates routine behavioral analysis, injections, and bio-

logical sampling.

However, two significant problems exist in the measurement

of emesis in musk shrews. The emetic episode in this species is

extremely fast, ∼1 s, compared to reports on free moving larger

animals, such as ferrets (∼10 s), and pigs (∼7 s) (Milano et al., 1995;

Percie du Sert et al., 2009a). An emetic episode is a series of retches

that is usually followed by an expulsion event (a vomit) (Andrews

et al., 1990). In fact, it is common for researchers using these larger

species to report individual features of emetic episodes, including

the number of retches and vomits (Andrews et al., 1990; King and

Landauer, 1990; Simoneau et al., 2001; Thompson et al., 1992).

Indeed, the number of retches might represent the major effect

in some experiments (Andrews et al., 1990). Andrews et al. sug-

gested that the retching frequency during an emetic episode could

be related to the respiratory frequency, such that animals with a

rapid respiration rate, like the musk shrew, might also have a more

rapid retching frequency (Andrews et al., 1996). A second problem

with the measurement of emesis is that it is laborious, which is not

specific to the use of musk shrews. For example, in the study of can-

cer chemotherapy-induced emesis it is typical to measure emesis

over several days. This necessitates round-the-clock video record-

ing of animal behavior and lengthy video playback with manual

coding (Percie du Sert et al., 2009b; Sam et al., 2003). Moreover, it

is difficult to assess subtle patterns of vomiting that might be dif-

ferent with different dosages of chemotherapy or variability among

musk shrews.

The goal of the current project was to find a solution to both

problems using computer analysis to individually measure retches

and automatically track emesis from video recordings. To accom-

plish this we used cisplatin (a highly emetic chemotherapy agent)

to induce emesis in two experiments. In Experiment 1, we tested

animals in a high contrast test chamber (dark animal on white

background) for 2 h. In Experiment 2, we focused on the more

challenging task of tracking emesis in the home cage (with bed-

ding, food container, and water spout) over 3 days post-injection

to capture the acute (<24 h) and delayed (>24 h) phases of cisplatin-

induced emesis (see review Rudd and Andrews, 2005).

2. Materials and methods

2.1. Subjects

The subjects were 16 adult musk shrews (>162 days of age) with

body weights of 56–82 g for males and 40–49 g for females. These

animals were derived from breeding stock acquired from the Chi-

nese University of Hong Kong, Prof. John Rudd (a strain originating

from Taiwan). The animals were housed individually in clear plastic

cages (28 cm × 17 cm × 12 cm), with a filtered air supply, using a 12-

hour light/dark cycle (07:00–19:00 or 08:00–20:00 light period),

and had free access to food and water. They were fed a combina-

tion of cat and mink food (mixture of 15% Purina Cat Chow Complete

Formula and 25% Complete Gro-Fur mink food pellets) while in the

home cage and during Experiment 2 testing (Rissman et al., 1988).

At the end of each experiment, animals were euthanized by CO2

gas from a gas cylinder. All experiments were approved by the Uni-

versity of Pittsburgh Institutional Animal Care and Use Committee.

2.2. Procedures for Experiments 1 (2 h) and 2 (72 h)

The doses of cisplatin are based on a prior study using 20 and

30 mg/kg cisplatin (Sam et al., 2003). In Experiment 1, at ∼1100 h

Fig. 1. Experimental chambers and camera position. In Experiment 1, the circular

test chamber was positioned on top of white laboratory paper. In Experiment 2, a

rectangular white acrylic enclosure was placed on top of a “home cage like” test

chamber. In both experiments, the camera was positioned 61 cm above the floor of

the test area.

10 animals (5 male and 5 female) were injected with cisplatin (20

mg/kg, i.p.; Sigma–Aldrich) and placed in a round chamber (Fig. 1)

under an animal transfer hood and behavior was video recorded

from above (Sony Handycam; DCR-SR300). Videos were stored on

the internal hard drive of the camera. White lab paper was used

for the bottom of the chamber to produce a high contrast with the

dark coat of the musk shrew. In one animal, the camera stopped at

1 h 50 min because of power lose.

In Experiment 2, behavior of six male musk shrews was video-

recorded for 72 h after injection of 30 mg/kg of cisplatin (i.p.).

We used 30 mg/kg cisplatin because, unlike 20 mg/kg, this dose

was reported to produce emesis in nearly all animals (Sam et al.,

2003). At ∼945 h an animal was placed individually into the cage

(Fig. 1) within an animal transfer hood (12-hour light/dark cycle).

A food cup was available and water was provided in a graduated

cylinder with a sipper tube protruding into the side of the cham-

ber (Fig. 1). Each morning at 945 h, the musk shrew was weighed

and food and water containers were checked and refilled. A cam-

era (Sony Handycam; DCR-SR300) was placed above the cage and

attached to the computer via a USB port (USB 2.0 Video Capture

Cable; StarTech.com). The videos were captured using Movie Maker

software (Microsoft).

2.3. Manual software coding of emesis

Videos (MPEG-2) were imported into behavioral coding

software (The Observer XT 10.1; Noldus Information Technol-

ogy, www.noldus.com, The Netherlands). Emetic episodes were

recorded manually with keystrokes by a trained observer view-

ing a computer monitor. An emetic episode was recognized as a

sequence of contractions of the abdomen and head movements

(retching). An emetic episode can occur with or without the expul-

sion of gastric contents (e.g., Horn et al., 2010b) and, therefore,

episodes without expulsion were also counted. The Observer soft-

ware allows users to slow down, reverse, and check the coding of

behaviors stored in a computer file containing the codes and times-

tamps. To analyze the microstructure (measures from the computer

algorithm, see below) of each manually labeled emetic episode we

determined the video frame at the start and at the end of each event

by slow motion video playback (VirtualDub; www.virtualdub.org).

2.4. Automatic detection of emesis

Given a video sequence captured at 30 frames per second of

musk shrew behavior we designed a system to automatically detect

emetic episodes. The system had two main components: (1) track-
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Fig. 2. Overview of the computerized detection system for emetic episodes. Top: Training phase to build a shape model of the body contour and a model for tracking emesis.

Bottom: processing of video frames to detect emesis. The white outline in each frame denotes the body contour of the musk shrew. Contour deformation = maximal-retch

component from the principal component analysis. See Section 2 and Appendix A for details.

ing the contour (outline) of the animal, and (2) detecting emesis

from the contour. Fig. 2 provides a graphical illustration of the

system.

2.4.1. Body contour tracking

Tracking the contour of the musk shrew is a challenging

computer vision problem for several reasons (e.g., Branson and

Belongie, 2005): (1) there are a large number of body configurations

and actions that the musk shrew can perform; (2) the deformation

of the shape of the body is highly non-rigid; (3) there are illumina-

tion changes, and the background is not uniform. To address these

challenges, the system had two main modules: (1) pre-processing

to generate the body contour in each frame, and (2) tracking the

contour across frames.

2.4.1.1. Preprocessing. Given an individual video frame (denoted

by I; Fig. 3A), the pre-processing step segments the musk shrew

from the background (Fig. 3B), and extracts the animal’s contour

(Fig. 3C) ignoring irrelevant information such as the fur, claws,

and tail. Before the musk shrew was put into the cage (for each

day), we recorded a background image, i.e. IB. We then applied

background subtraction to detect the musk shrew, i.e., the pixels

containing the animal were obtained by thresholding the absolute

difference between the background image IB and the frame image

I, i.e., abs(I − IB). However, due to the irregular illumination in the

cage (e.g., brighter in the center and darker in the corners; see Fig. 1,

Exp. 2 test chamber), the boundary of the animal can be corrupted

when segmented with the same threshold in different cage regions.

To provide robustness to non-uniform illumination we used the

relative absolute difference: IF = abs(I − IB)/IB (Fig. 3B). Finally, the

body contour (Fig. 3C) was extracted as the pixels on boundary

of the segment body using morphological operators. Specifically,

we subtracted the eroded version of image patch in Fig. 3B from

the dilated version to get the boundary pixels (see Gonzalez and

Woods, 2002 for information about morphological operators).

2.4.1.2. Contour tracking. The shape and length of the body con-

tour can vary across video frames, as well as the number of pixels

on the boundary. Therefore, the correspondence of the points on

the body contours in different frames must be determined in order

to model the underlying body movement across time. This was

accomplished by using an extension of Point Distribution Mod-

els (PDMs) (Myronenko et al., 2006), a statistical tool to model a

deformable shape template (40 landmark points were used; Fig. 4A)

that defines the body contour. By matching the landmark points of

the shape template (Fig. 4A) to the edge points on the body contour

from each frame (Fig. 3C), the body movement can be measured

as the degree of displacement between corresponding edge points

matched with the same landmark points. However, we discovered

that it was difficult to match the shape template to the body con-

Fig. 3. Preprocessing of the video showing the (A) original image, (B) body segmentation, and (C) extraction of the musk shrew body contour.
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Fig. 4. Body shape template. (A) The mean of the body contour template, and (B)

The superposed body contours of the shape variations (starting with the red con-

tours) along each of the four principal components (PCs) from a principal component

analysis. These modes of movement represent the most dominant variations in body

shape from the training set. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of the article.)

tour in each video frame for two reasons: (1) The movements of the

musk shrew are typically very fast and represent non-rigid motions,

and (2) there is no reliable local shape feature or local texture

feature to guarantee the correspondences between the template

landmarks and the edge points of the body contour. To deal with

these problems, we used an extension of PDMs, where a shape

model is trained beforehand to constrain the possible deformations

of the shape (see Appendix A).

Firstly, in a training phase, the statistical shape model of musk

shrew body deformation was built (see Appendix A) from a set of

training samples, which are the frames containing various body

configuration contours of the musk shrew (see Fig. 2, top left). For

each training sample, we manually labeled 40 landmarks (points)

along the body contour (Fig. 4A). Ten of the 40 landmarks corre-

spond to well-defined physical features (e.g., the nose, ears, shoul-

ders, waist sides, thighs, and the tail end). The remaining 30 points

were uniformly interpolated among those 10 landmarks. We then

ran Procrustes Analysis (Dryden and Mardia, 1998) to remove rigid

transformations (a rigid transformation is a change in direction,

location, and scale of the animal) and compute the mean tem-

plate for the body contour (Fig. 4A). Principal Component Analysis

(PCA) (Jolliffe, 1986) was then performed on the aligned contours to

get the dominant components that parameterize the shape model.

Here, a linear combination of four dominant components (Fig. 4B)

was used to approximate the shape configuration for each training

video frame. Once the shape model was learned from training data,

the next step was to use this model to constrain the deformation of

the previously untrained video using PDMs (Fig. 5A) (see Appendix

A). Finally, our algorithm deforms the shape template (the blue cir-

cles, Fig. 5A) from the initial configuration to the final state to match

the edge points of the contour (the red line, Fig. 5B).

Fig. 5. Non-rigid body contour matching. The template landmarks (blue circles) are

iteratively updated to match the edge points (red line) of the musk shrew from each

video frame: an example of the (A) initial state before the updates and the (B) final

state. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of the article.)

Fig. 6. Plot of the first principal component score (the maximal-retch component).

(A) An example emetic episode was detected as a set of consecutive retches (∼133 ms

inter-retch interval with an emetic episode duration of ∼1 s). (B) The blue and red

contours show the body with contraction (valleys) and elongation (peaks), respec-

tively, during a retch. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of the article.)

2.4.2. Detection algorithm for emetic episodes

Once the tracking was completed, each video frame was repre-

sented by a set of 40 two-dimensional landmarks (Fig. 5). The next

step was to detect emetic episodes, which are characterized by the

amplitude and frequency of body contour variations, i.e., a sequence

of retches. However, emesis-related retches in musk shrews are

very subtle movements in comparison with other common actions

such as locomotion, grooming, and curling. Moreover, the ampli-

tude and rhythm of retches vary with different animals and even

for different times from the same animal. As in the previous section,

we followed a learning-based approach to detect emetic episodes.

2.4.2.1. Modeling the retches during an emetic episode. In the train-

ing stage, we collected the 40 two-dimensional landmarks (i.e.,

an 80 dimensional vector) for all frames corresponding to emetic

episodes from the five musk shrews that showed emesis in Exper-

iment 1. We then removed the rigid transformations (rotation,

location, and scale) across samples, and conducted PCA to deter-

mine the principal mode of shape changes during emetic episodes

across video frames (note that this PCA is performed on the same

training data used to learn the shape model). The first principal

component of the PCA corresponded to the maximal shape vari-

ation during retching. We refer to this principal component as

the maximal-retch component. We projected the tracked contours

onto the maximal-retch component and produced a 1D representa-

tion for the original contour sequence. Fig. 6 shows the 1D sequence

of the maximal-retch component.

We then computed statistics for the 1D sequence of maximal-

retch component over time (across video frames), including the

mean (md) and variance (ıd) of the displacements (dtrain) between

the peak and valley points on the 1D sequence. Here a peak (or

valley) point is detected if the value on point is the higher (or lower)

than its two neighboring points on the sequence. The amount of

each displacement belonging to an emetic episode was computed

as exp[−(dtrain − md/ı2
d)]. Finally, according to the training retches,

the threshold for detection of an emetic event was selected as 0.7

times the standard deviation, that is abs(dtrain − md) ≤ 0.7ıd.

2.4.2.2. Detecting emesis in a test video. To detect emetic episodes

in new videos (e.g., Experiment 2), we proceeded as follows: (1)

detect and segment the musk shrew in each frame, (2) track the

contours with a non-rigid shape matching algorithm and remove

the rigid transformation, and (3) project the contours into the pre-

viously learned maximal-retch component to obtain the 1D (one

dimensional) measurement sequence of the test video.
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Table 1
Computerized detection for Experiment 1 (2 h test).

# of emetic episodes

(manually scored)

Correctly

detected (%)

False

positives

Individual animals

139 2 2 (100%) 0

158 5 3 (60%) 1

111 8 8 (100%) 0

196 8 8 (100%) 0

195 10 9 (90%) 1

All data

30 (91%) 2

At this stage, the problem of detecting emesis in the test video

was reduced to detecting the retches on the 1D sequence computed

above. Specifically, the peaks and valleys were detected on the 1D

test sequence and the certainty of each displacement (between

peaks and valleys) was computed by exp[−(dtest − md)2/ı2
d] as in

the previous subsection. A candidate retch was detected when

the amount of displacement exceeded the training threshold (i.e.,

abs(dtest − md) ≤ 0.7ıd). Finally an emetic episode was identified

when three or more consecutive retches occurred.

2.5. Data analysis

For emetic episodes, we computed standard statistics

(means ± SEMs) to describe the distribution of scores. Devia-

tions between manual and automatically scored emetic episodes

were computed by percentages. Emetic episodes were analyzed

for duration, the number of peaks (putative retches), inter-retch

interval, signal amplitude (i.e., maximal-retch component), and

retching speed (Hz).

3. Results

3.1. Manually labeled emetic episodes

3.1.1. Experiment 1 (2 h)

Cisplatin injection (20 mg/kg) produced emetic episodes

(6.6 ± 1.4 events) in 5 of the 10 animals tested, three males and two

females. Fig. 7A shows the mean number of emetic episodes over

the 2 h test session for these five animals (Table 1, emetic episodes

in each animal).

3.1.2. Experiment 2 (72 h)

Cisplatin injection (30 mg/kg) induced emesis in all six animals

tested. Fig. 7B shows the mean number of emetic episodes over the

72 h test session (Table 2, emetic episodes in each animal).

Fig. 7. Average number of emetic episodes (±SEM) induced by cisplatin in (A) each

minute in Experiment 1 (20 mg/kg, i.p.; n = 5) and (B) each hour in Experiment 2

(30 mg/kg, i.p.; n = 6).

3.2. Automatic detection of emetic episodes

3.2.1. Experiment 1 (2 h)

Cisplatin injection (20 mg/kg) produced 33 emetic episodes in

5 animals and the computer algorithm successfully detected 30 of

these events (91%). The three that were not detected were either

of low amplitude or fewer than three consecutive retches. There

were also two false positives. Table 1 shows a comparison between

manual scoring and automatic detection for each animal.

3.2.2. Experiment 2 (72 h)

Cisplatin injection (30 mg/kg) produced 97 emetic episodes in

6 animals. Automatic detection of these events was most accurate

during the acute phase (Day 1). Twenty-seven of 32 events were

Table 2
Computerized detection for Experiment 2 (72 h test).

Day 1 (0–24 h) Day 3 (48–72 h) All Days

# Emetic episodes Correct (%) False

positives

# Emetic

episodes

Correct (%) False

positives

# Emetic

episodes

Correct (%) False

positives

Individual animals

189 3 3 (100%) 1 0 0 0 3 3 (100%) 1

026 0 0 0 7 6 (86%) 2 7 6 (86%) 2

110 5 5 (100%) 0 4 3 (75%) 0 9 8 (89%) 0

190 5 5 (100%) 0 5 5 (100%) 0 10 10 (100%) 0

028 0 0 0 16 14 (88%) 1 16 14 (88%) 1

152 19 14 (74%) 0 33 16 (48%) 1 52 30 (58%) 0

All data

32 27 (84%) 1 65 44 (68%) 4 97 71 (73%) 4
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Table 3
Computerized detection for Experiment 2 using cross-validation (72 h test).

Day 1 (0–24 h) Day 3 (48–72 h) All Days

# Emetic episodes Correct (%) False

positives

# Emetic episodes Correct (%) False

positives

# Emetic episodes Correct (%) False

positives

Individual animals

189 3 3 (100%) 1 0 0 0 3 3 (100%) 1

026 0 0 0 7 6 (86%) 2 7 6 (86%) 2

110 5 5 (100%) 2 4 2 (50%) 0 9 7 (78%) 2

190 5 5 (100%) 0 5 5 (100%) 1 10 10 (100%) 1

028 0 0 0 16 14 (88%) 0 16 14 (88%) 0

152 19 14 (74%) 0 33 19 (58%) 1 52 33 (63%) 1

All data

32 27 (84%) 3 65 46 (71%) 4 97 73 (75%) 7

detected (84%) during this period with only one false positive. How-

ever, detection of events during the delayed phase (Day 3) proved

more difficult with only 45 of 65 events detected (68%). This was

most problematic in animal number 152, which had many more

emetic episodes compared to other animals (Table 2). Events that

were not detected included 8 with little lengthwise movement dur-

ing retching (the basis for the maximal-retch component from PCA),

6 when the nose was against the chamber wall, 4 that displayed

less than three consecutive retches, 3 that showed small ampli-

tude retches, 2 with nose swing or curved body posture, and 1 that

included an irregularly long duration single retch in a sequence.

See Table 2 for a comparison of the manual and automatic scor-

ing for each animal. Four emetic events are not included in Table 2

because these involved interference with the food cup (animal sit-

ting on top, 2 events) or were missed in the initial manual scoring

(1 manually scored event was determined to be 3 events in post

hoc analyses, animal #152; see discussion section). The food cup

could be easily removed and replaced with an outside food hopper

in future experiments.

We also used as training data the samples from Experiment 2

and performed a leave one-out cross-validation; in other words,

we ran six trials, and in each trial, data from 5 animals was used

to build the model (calculating the maximal retch component and

the threshold) to detect emesis and the remaining animal was used

for testing. The results are included in Table 3. As can be seen in

Table 3, the average results of using data from Experiment 2 is

slightly better than using training data from Experiment 1. This

is not surprising, because the type of emesis is more similar within

datasets than between datasets. However, it is important to notice

that animal 152 showed a different emetic pattern compared to the

other animals, and this can bias the model when the samples from

this animal are used for learning.

3.3. Analysis of the emetic episodes in Experiment 2

There was a positive correlation between the emetic episode

duration and the number of retches (r = 0.79; Fig. 8A). Emetic

episodes ranged from 3 to 12 retches (Fig. 8B), with a median of 7

and average of 6.5 ± 0.2 retches (this is calculated using all emetic

episodes). Emetic episodes occurred in bouts of 1.2 ± 0.13 s with

retching occurring at a speed of 5.4 ± 0.3 Hz, with an inter-retch

interval of 198 ± 0.01 ms (these calculations, n = 6, are based on the

mean of the mean values for each animal). Fig. 9 shows the duration,

number of retches, inter-retch interval, mean amplitude (maximal-

retch component), and speed (Hz) for the acute (24 h) and delayed

(48–72 h) phases after cisplatin injection. These values represent

the mean of the means of each animal, and because not all animals

showed both acute and delayed phases of emesis (see Table 2) these

data contain sample sizes of n = 4 for the acute phase and n = 5 for

the delayed phase.

4. Discussion

These results show that it is possible to automatically detect

emetic episodes and analyze the microstructure of these events

from the musk shrew. Cisplatin treatment at these doses produced

an emetic intensity and pattern that was consistent with other

reports (e.g., Andrews et al., 2000; Horn et al., 2010b; Kwiatkowska

et al., 2004; Matsuki et al., 1988; Mutoh et al., 1992; Sam et al.,

Fig. 8. Number of retches per emetic episode in Experiment 2 (72 h recording after

cisplatin treatment). (A) The relationship between the number of retches and the

duration of each emetic episode. (B) A frequency distribution of the number of

retches in the emetic episodes. These data were computed from 6 animals and 101

emetic episodes.
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Fig. 9. Details of emetic episodes during the acute (Day 1) and delayed (Day 3)

phases after cisplatin treatment. These statistics were determined by computer

analysis using the maximal-retch component measure and are based on all of

the manually scored emetic episodes. See Section 2 for details. Values represent

mean ± SEMs (calculations are based on the mean of the mean values for each

animal). These data were computed from 6 animals and 101 emetic episodes.

2003). The computer algorithm was largely successful for the detec-

tion of emetic episodes in the short-term (up to 24 h). There were

65 emetic episodes in Experiment 1 (2 h) and Experiment 2 in Day

1 (first 24 h), and 57 of these events were automatically detected

with the computer algorithm (88%). However, it was more diffi-

cult to use the computer algorithm to detect events in the delayed

phase, Day 3 (48–72 h), in Experiment 2; only 45 of 65 events were

correctly detected (69% or 71% in cross-validation). We believe this

problem is the result of subtle changes in the emetic episodes that

are not present in the training set from short-term data acquired in

Experiment 1. Potentially the model for detection is biased by out-

liers such as the intense pattern of emesis that occurred in animal

152 (Tables 2 and 3).

It would have been possible to increase the number of correctly

detected events by reducing the threshold for the maximal-retch

component or the criterion of at least a sequence of 3 retches.

However, this would have resulted in greater number of false pos-

itives. In these experiments, there were 6 false positives in 107

detected events using the current algorithm settings (a false pos-

itive rate of 5.6%; or 9 false positives at a rate of 8.0% in 112

detections in the cross-validation). Although the main aim of this

report was to explore a generic and fully automatic method to

detect emetic episodes, it might be reasonable to explore a semi-

automated approach in future studies. Using this approach, the

threshold could be relaxed to allow greater detection and users

could manually make corrections. The automatic detection results

could also be improved using several strategies: round test cham-

ber, use of more training data to build more robust estimates of

the maximal-retch component, use of the second retch component

from the PCA, and more accurate tracking by having a denser spatial

sampling with more landmarks. A round test chamber is superior

because there are no corners for the animal to poke the snout and

affect the body contour. Furthermore, the food cup can be replaced

with a food hopper on the outside of test chamber so that the ani-

mal will be unable to stand on an object that could also affect the

body contour. However, the impact of each of these changes on

the final result still needs to be determined in future research. It

is also important that these detection methods are validated using

different stimuli, including other drugs, motion, and conditioning

effects (e.g., Matsuki et al., 1988; Parker et al., 2006; Ueno et al.,

1988; Yamamoto et al., 2004).

It is important to note that manual scoring is not error free. For

example, we discovered a case where the human observer scored

three events as one event. We discovered these events as a result of

initially looking at plots of the maximal-retch component. This led

to more thorough inspection of the video and stepping the frames

forward and backward one at a time. There were also isolated

retches and abdominal movements that were frequently observed

but were not manually scored as complete emetic episodes.

We were able to determine for the first time, using a detailed

analysis of each emetic episode (made possible by computer analy-

sis), a more complete picture of the emetic episodes in this species.

These events were slightly faster (∼5 vs. 4 Hz) and close to the

same duration (Fig. 8) as those reported for anesthetized musk

shrews (using sodium pentobarbital) in which abdominal and tho-

racic pressure changes were recorded during emesis induced by

mechanical stimulation of the esophagus (Andrews et al., 1996).

Other animals, such as ferrets, also show slower retching with anes-

thesia compared to the awake state (Onishi et al., 2007; Percie du

Sert et al., 2009a). We also discovered that there is little to no varia-

tion in the duration, number of retches, amplitude, and inter-retch

interval in the emetic episode over the course of the long-term

experiment (72 h) after cisplatin treatment. This is the first time

that the details of emetic episodes have been tracking over the acute

and delayed phases after cisplatin treatment.

There are two major benefits to the present computerized detec-

tion approach. First, by producing a computer algorithm for emesis

detection it is possible to have a high throughput analysis of eme-

sis from video acquired during animal experiments. One significant

limiting factor in the study of chemotherapy-induced emesis in

animal models is that it occurs over the course of several days

post treatment. Therefore, this requires very time consuming direct

observation or videotaping and playback of animal behavior for

multiple days (Rudd and Naylor, 1994; Sam et al., 2003). The com-

puter algorithm used here paves the way for a substantial reduction

in the time needed for data collection. Furthermore, although we

use this algorithm to detect emesis in musk shrews, it should

be applicable for other species, including ferrets, dogs, and cats

that have a much slower retching frequency (Milano et al., 1995;

Monges et al., 1978; Percie du Sert et al., 2009a) by changing the

training data. Second, this algorithm permits the detailed analy-

sis of the microstructure of emetic episodes. The emetic episode

induced by cisplatin was relatively unchanged over several days

post treatment (Fig. 9).

In summary, the present results represent a major advancement

in this field by developing a way to detect emesis automatically

using a non-invasive method to analyze video of animal behavior.

Past work has focused on implantation of electrodes to record EMG

or pressure changes associated with emesis (Milano et al., 1995;
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Monges et al., 1978; Percie du Sert et al., 2009a). Importantly, the

current methods also allow for the first time a detailed inspection

of the emetic episode from the musk shrew. This provides useful

insight into the output of the central pattern generator for emesis

in a free moving awake animal.
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Appendix A.

The detailed algorithm for body contour tracking is described

below.

A.1. Error function for non-rigid contour matching

The first step to build the error function is to learn a shape model

from training data. We selected q frames as training samples with

musk shrews in different configurations, and manually labeled n

landmarks around the body contour (that define the shape) in each

frame. Then, we ran Procrustes analysis [56] on the q samples to

remove the rigid transformation (rotation, translation and scale).

Let Z ∈ � 2n×q (see the footnote1 for the notation) be a matrix that

contains the coordinates of n landmarks in each of the q aligned

training shapes (after Procrustes). After removing the mean (z̄ =
(1/n)Z1) of the aligned shapes, the non-rigid shape basis can be

computed with the Singular Value Decomposition (SVD) as:

Z
(

I − 1

n
11T

)
≈ U� ,

where U ∈ � 2n×k contains the basis that spans the directions of

maximum variation (first k eigenvectors of Z), and � ∈ � k×1 is the

coefficient matrix, where each column represents the coefficient for

a particular sample. We selected the k eigenvectors that preserve

95% of the energy.

Once the shape model has been learned, the next step is to

match the points in the model to their corresponding edge points

in a new test frame. Let X = {x1, · · ·, xn} ∈ �2×n be a matrix that

contains n 2-dimensional points belonging to a shape that can

be represented by the shape model (mean and columns of U).

Let Y =
{

y1, · · ·, ym

}
∈ �2×m be a matrix that contains the m 2-

dimensional edge points extracted from the frame. In the simplest

case, when the two point sets X and Y mostly overlap (e.g., Fig 5B),

the correspondence between a point xi can be found as the closest,

in Euclidean distance, of the points in Y. However, in general given

Y in a new test frame, we need to compute the rigid transforma-

tion and shape coefficients of the shape model, such that there is

an average minimum distance between the points on X and Y. To

solve this problem we follow previous work by Myronenko et al.

(2006).

1 Bold capital letters denote matrices X, bold lower-case letters a column vector

x. xj represents the jth column of the matrix X. Vector 1 is the vector of all ones.

All non-bold letters represent scalar variables. xij denotes the scalar in the row i

and column j of the matrix X and the scalar ith element of a column vector xj . ‖x‖2
2

denotes the norm of the vector x. tr(A)=
∑

i aii is the trace of the matrix A and diag(a)

denotes a operator that generates a diagonal matrix with the elements of the vector

a.
∥

A
∥2

F = tr(ATA) = tr(AAT) designates the Frobenious norm of matrix A.

Let us consider each point in Y as a center of a Gaussian-mixture

model, and the points in the X as the samples drawn from this

Gaussian-mixture model. Then, the optimal point set X that max-

imizes its likelihood with points in Y will provide the matching or

correspondence, and it can be solved by minimizing the following

energy function (Myronenko et al., 2006),

E(X) = −
m∑

j=1

log

n∑
i=1

exp

{
− 1

2ı

∥∥yj − xi

∥∥2

2

}

where ı is a bandwidth parameter.

At this point recall that the feasible configuration for X is a lin-

ear combination of the (mean Z and columns of U) plus a rigid

transformation (rotation, scale and translation).

Following previous work (Fitzgibbon, 2003; Myronenko et al.,

2006; Zhang, 1994), we use the following optimization strategy for

E(X): at the 0th iteration, X0 = Z (Z ∈ �2×n is a rearrangement of the

mean vector z ∈ �2n×1), that is X0, is the mean of the shape model.

Then, we iteratively update X as Xt+1 = stRtXt + Vt while optimizing

for the rigid and non-rigid transformation parameters. t denotes

the iteration step, st is the scaling factor, Rt ∈ � 2×2 is the rotation

matrix, and Vt ∈ � 2×n contains the displacement. Optimization of

E(X) to find the optimal X that matches the points in Y and con-

straint Xt can be rewritten as the follows:

E(Xt , ıt, st, Rt , Vt) = −
m∑

j=1

log

n∑
i=1

exp

{
− 1

2ıt

∥∥yj−(stRtxt
i + vt

i )
∥∥2

2

}

+ �

2

∥∥∥Vt
(

I − 1

n
11T

)
− V∗(U)

∥∥∥
2

F
,

where vi
t ∈ � 2×1 is the ith column of Vt ∈ � 2×n , V*(U) ∈ � 2×n

contains the non-rigid part of the displacement Vt that can be

reconstructed by the pre-learned shape basis U ∈ � 2n×k. The first

term of the error function E(Xt, ıt, st, Rt, Vt) measures the similarity

between Xt and Y, while the second term constrains the deviations

of Xt from the pre-learned shape model (mean Z and columns of

U). The second term encourages solutions of Xt such that the dis-

placement Vt is close to the subspace generated by model (mean Z
and columns of U).

To do this, the second term minimizes the difference between

the non-rigid part of Vt and V*(U), i.e.
∥∥Vt(I − (1/n)11T) − V∗(U)

∥∥2

F
,

where (1/n)Vt11T denotes the rigid part of the displacement, i.e.

translation. The mathematical description of V*(U) is given below.

A.2. Optimization algorithm

This subsection describes the optimization algorithm for mini-

mizing E(Xt, ıt, st, Rt, Vt) with respect to the parameters (ıt, st, Rt,

Vt) and the shape Xt.

Following previous work (Myronenko et al., 2006), we trans-

formed the problem of minimizing E(ıt, st, Rt, Vt) to minimization

of its upper bound:

Q (Xt , ıt, st, Rt , Vt) = 1

2ıt

m∑
j=1

n∑
i=1

p
(

xi

∣∣yj

)∥∥yj − (stRtxi
t + vi)

∥∥2

2

+ md

2
log ıt + �

2

∥∥VtH − V∗(U)
∥∥2

F
,

where p
(

xi

∣∣yj

)
is the posterior probability of the ith point in Xt

belonging to the local Gaussian model centered at the jth edge point

in Y, and H =
(

I − 1
n 11T

)
.

To optimize Q(Xt, ıt, st, Rt, Vt) we used an Expectation-

Maximization (EM) type algorithm that alternates between two

steps:
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Given the initial guess of parameters as

X0 = Z, s0 = 1, R0 = I, V0 = 0,

ı0 = 1

nmd

m∑
j=1

n∑
i=1

∥∥yj − xi
0
∥∥2

2
.

The E-step: At the ith iteration, the posterior probability of xi

matching yj is

p
(

xi

∣∣yj

)
=

exp

{
−
∥∥yj − (stRtxi

t + vi
t)
∥∥2

2
/2ıt

}

n∑
q=1

exp

{
−
∥∥yj − (stRtxi

t + vi
t)
∥∥2

2
/2ıt

}
+ ε

,

where ε = (2�ıt)
d/2

(�/1 − �)(n/m) accounts for outliers. � ∈ [0, 1]

controls the level of robustness.

The M-step: At the ith iteration, the m-step computes the scale

st, rotation Rt and the displacement Vt, then updates Xt to get the

new version of the shape as Xt+1 = stRtXt + Vt. At last, the Gaussian

parameter ıt is updated based on Xt+1.

Let matrix P ∈ � n×m contains the elements Pij = p
(

xi

∣∣yj

)
(i = 1,

. . ., n ; j = 1, . . ., m), then the scale st and rotation Rt can be computed

using the method in Myronenko et al. (2006) as follows:

• Compute �X = 1
1TP1

(Xt)
T
PT1, �Y = 1

1TP1
YTPT1;

• Compute X̂
t = Xt − �X1T, Ŷ

t = Y − �Y 1T;

• Perform SVD of A = USVT where A = X̂
t
P(Ŷ

t
)
T
,

• Rt = UCVT where C = diag(1, . . . 1, det(UVT)),

• st = tr(RtA)

tr[X̂
t
diag(P1)(X̂

t
)
T

]

.

Before computing the displacement Vt ∈ � 2×n that minimizes

Q(Xt, ıt, st, Rt, Vt), V*(U) ∈ � 2×n is computed using the basis of the

model U ∈ � 2n×k using the following method.

First, let Ṽ
t

be the preliminary version of displacement that

matches stRtXt to Y, and Ṽ
t

can be computed by taking the deriva-

tive, ∂Q/∂Vt , and making it equal to zero when � = 0,

Ṽ
t = (YPT − Xt diag{P1}) (diag{P1})−1

Since Ṽ
t

is in the 2-D image space, it needs to be trans-

formed to the 2n dimensional space of the shape model before

computing its reconstructed version V*(U) using the basis U of

the shape model. Note this transformation, denoted by a func-

tion w(·), contains the same operations (scaling and rotation) that

align stRtXt is to the mean training shape z̄ ∈ �2n×1 to get the 2n

dimensional concatenated vector x̃t = w(stRtXt) ∈ �2n×1. We get

the preliminary displacement in the 2n-D space of shape model

as ṽt = w(Ṽ
t
) ∈ �2n×1. Then, the 2n dimensional vector recon-

structed by the pre-learned shape model is computed as ṽ∗(U) =
UUTṽt ∈ �2n×1. Transforming back to the image space, we have

V∗(U) = W−1(ṽ∗(U)) ∈ �2×n, where W−1( · ) is inverse function of

w( · ).

After V*(U) is computed, taking partial derivatives of Q with

respect to Vt, we obtain the optimal displacement

Vt = (YPT − Xt diag{P1} + �ıtV∗(U)H) (diag{P1} + �ıtH2)
−1

After computing st, Rt, Vt, the shape Xt is updated as

Xt+1 = stRtXt + Vt.

Given the new shape Xt+1, the Gaussian parameter ıt is updated

as:

ıt+1 = 1

md

m∑
j=1

n∑
i=1

p
(

xi

∣∣yj

) ∥∥yj − xi
t+1

∥∥2

2
= 1

md
[tr(Ydiag{PT1}YT)

− 2tr(Xt+1PYT ) + tr(Xt+1diag{P1}(Xt+1)
T
)]

The above E-step and M-step are alternated until the change of

Vt is small. After convergence, the subset of edge points in Y that

corresponds (is nearest) to the points in Xt is used to represent the

matched contour in the new testing image.
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