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Abstract

Two dimensional shape models have been successfully
applied to solve many problems in computer vision such as
object tracking, recognition, and segmentation. Typically,
2D shape models (e.g. Point Distribution Models, Active
Shape Models) are learned from a discrete set of image
landmarks once the rigid transformations are removed by
applying Procrustes Analysis (PA). However, the standard
PA process suffers from two main limitations: (i) the 2D
training samples do not necessarily cover a uniform sam-
pling of all 3D transformations of an object. This can bias
the estimate of the shape model; (ii) it can be computation-
ally expensive to learn the shape model by sampling 3D
transformations; To solve these problems, we propose Con-
tinuous Procrustes Analysis (CPA). CPA uses a continuous
formulation that avoids the need to generate 2D projections
from all 3D rigid transformations. Furthermore, it builds
an efficient (space and time) non-biased 2D shape model
from a 3D model of an object. Preliminary experimental
results to build 2D shape models of objects and faces show
the benefits of CPA over PA.

1. Introduction

Shape models have been successfully applied to solve
many computer vision problems such as: object recogni-
tion [22, 13], face tracking [1, 7, 2, 3, 9], and image seg-
mentation [19, 17]. The theoretical validity for the use
of 2D shape models was proved by Ullman et al. [22]
and Tomasi/Kanade [21], who showed how different 2D
views of a 3D object can be recovered with a three di-
mensional subspace (under orthographic projection). This
fact has been used in many computer vision algorithms to
learn shape models by labeling the projections of 3D ob-
jects. Point Distribution Models (PDMs) and Active Shape
Models (ASMs) [4] are among the most popular techniques
that use 2D shape models. PDMs and ASMs build a shape
model from a two dimensional training set of landmarks

Figure 1. Illustration of Procrustes Analysis (PA) (top) and Con-
tinuous Procrustes Analysis (CPA) (bottom) to construct 2D shape
models.

(projections from a finite set of 3D points on a shape sur-
face). Procrustes Analysis (PA) [10] is used to remove rigid
transformations and Principal Component Analysis (PCA)
is applied to construct a subspace that models the variation
of the normalized shapes [4]. Figure 1 (top) illustrates the
PA process: given a 3D object PA computes the 2D mean
shape that after rigid transformations (e.g. Euclidean or
affine) can better reconstruct (in the least-squares sense) the
projections of the object from different views. Although
PA has been extensively used, it suffers from several limita-
tions: (i) the 2D training samples do not necessarily cover
a uniform sampling of all 3D transformations of an object.
This can bias the estimate of the 2D models towards some
particular configurations; (ii) it is computationally expen-
sive to compute 2D projections from all possible 3D trans-
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formations of an object; (iii) PA aligns the samples w.r.t. the
mean to remove rigid transformations. The residual vari-
ation of the shape (difference w.r.t the mean) is modeled
with unsupervised algorithms (e.g. PCA). Independently
estimating the registration parameters and the model shape
parameters might result in a loss of relevant information.

To solve some of the limitations of PA (i and ii), this pa-
per proposes Continuous Procrustes Analysis (CPA), a con-
tinuous formulation of PA. CPA builds a mean model of
the object by integrating all possible rotations of a 3D mesh
model of an object. Unlike PA, CPA needs a 3D model. Ob-
serve that CPA also solves a relatively unexplored problem
in computer vision: to build 2D models that can recover
possible 3D rigid and non-rigid configurations of the ob-
ject. CPA generalizes PA using a continuous formulation
that avoids the need to generate 2D projections from 3D
configurations. There are several additional important ad-
vantages of the functional approximation of CPA: (1) there
is no need to synthesize all possible 3D object configura-
tions under rigid transformations, which greatly improves
efficiency in space and time, (2) it is not biased to a non-
uniform sampling of the rigid space. Figure 1 (bottom) il-
lustrates the contribution behind CPA. CPA uses a continu-
ous formulation that covers the space of all 3D transforma-
tions.

The rest of the paper is organized as follows: Section 2
reviews previous work, Section 3 motivates and derives
CPA. Section 4 reports experimental results, Section 5 fi-
nalizes the paper with the conclusions and future work.

2. Previous Work
In many computer vision applications, it is important to

learn a shape and/or appearance model invariant to geomet-
ric transformations (e.g. rotation, scale, non-rigid motion)
[8, 10, 6, 15, 5, 1, 14].

Procrustes Analysis for Shape Alignment. PA [10] is
one of the most popular algorithms to align shapes or im-
ages to a common reference frame removing rigid transfor-
mations. PA registers the training shape samples by finding
a common co-ordinate frame while removing rigid trans-
formations. The shape samples are represented as the 2D
locations of ℓ points in a matrix Di ∈ R2×ℓ ,

Di =

(
xi1 . . . xiℓ
yi1 . . . yiℓ

)
.

Let D be a matrix D = [DT
1 , · · · ,DT

m]T ∈ R2m×ℓ (see
notation1) containing the set of shape samples, where m is

1Bold capital letters denote a matrix D , bold lower-case letters a col-
umn vector d . Di represents the ith block matrix of the matrix D . dj

represents the jth column of the matrix D . All non-bold letters denote
scalar variables. ||D||2F = tr(DTD) designates the square of the Frobe-
nius norm of a matrix. We assume m,n, d, l, r ∈ N . N and R denote

the number of 2D training examples, and ℓ refers to the
number of landmarks.

PA optimizes over the geometric transformations that
aligns each sample (Di ) w.r.t. the mean by minimizing:

E1(M,A) =
m∑
i=1

||Di −AiM||2F = ||D−AM||2F , (2.1)

where M ∈ R2×ℓ represents the mean shape, and each
Ai in A = [AT

1 , · · · ,AT
m]T ∈ R2m×2 corresponds to the

rigid transformation for the shape sample Di (e.g. Affine,
Euclidean).

Recently, there has been a lot of interest in extending PA
methods to the case where correspondences are unknown,
using appearance features, or adding non-rigid deforma-
tions. Frey and Jojic [8] proposed a method to learn a factor
analysis model invariant to geometric transformations. The
computational cost of this method grows polynomially with
the number of possible spatial transformations, and it can
be computationally intensive when working with high di-
mensional motion models. To improve upon this problem,
De la Torre and Black [6] proposed parameterized compo-
nent analysis, a gradient-based method that learns a PCA
model invariantly to affine transformations. Baker et al. [1]
learned an Active Appearance Models (AAMs) invariantly
to rigid and non-rigid motion. De la Torre and Nguyen [7]
extended Parameterized component analysis to deal with
non-linear appearance representations (using kernels) and
non-rigid transformations. More recently, Miller et al. have
proposed the Congealing method [15, 12], that uses an en-
tropy measure to align images with respect to the distribu-
tion of the data. Cox et al. [5] extended [15, 12] with a
least-squares optimization, similar in spirit to [6] but not in-
cluding the subspace. Kookinos and Yuille [14] proposed a
probabilistic framework and extended previous approaches
[1, 15, 6] to deal with articulated objects by using a Markov
Random Field (MRF) on top of AAMs.

Functional Data Analysis. Our work is related to previ-
ous works on functional data analysis [20]. Functional data
analysis (FDA) [20] is a branch of statistics that analyzes
data providing information about curves, surfaces or func-
tions varying over a continuum. For instance, we can treat
images as a bidimensional continuous function and many
techniques of FDA will be applicable. In fact, many FDA
methods are extensions of classical multivariate methods
such as Principal Components Analysis (PCA), Linear Dis-
criminant Analysis (LDA), and Analysis of Variance [20].
Most related to our work is Functional PCA [20]. Func-
tional PCA models the way in which a set of functional data

the set of natural and real numbers respectively, and Rd denotes the set of
real vectors of dimension d . The set operation Ω \ Γ stands for the set
difference of Ωand Γ . ∇uF is the gradient operator with respect to u
of the function F .



varies from its mean, and in terms of these modes of vari-
ability, quantifies the discrepancy from the mean of each
individual functional data.

In the computer vision literature, Ormoneit et al. [18]
presented a robust method for learning functional PCA to
model cyclic 3D human motion such as walking in motion-
capture data. The pose of the body is represented by a time
series of joint angles, which are automatically segmented
into a sequence of motion cycles. The mean and the prin-
cipal components of these cycles are computed using a new
algorithm that enforces smooth transitions between the cy-
cles by operating in the Fourier domain. This model is used
for Bayesian tracking of 3D human motion. Also in the
context of PCA, Levine and Shashua [16] used a continu-
ous formulation of PCA that integrates over the convex hull
of the sample data. Strictly speaking, the eigenvectors that
the authors compute are not functions. By integrating over
the convex hull of the data, they avoid biasing the principal
components due to bad sampling of the input space.

3. Continuous Procrustes Analysis
This section proposes Continuous Procrustes Analysis

(CPA) to learn an unbiased 2D shape model using as input
the 3D structure of an object. CPA extends PA by adapting
a continuous formulation that incorporates the information
of all 3D rigid transformations.

3.1. Energy Functional for Continuous Procrustes
Analysis

Let D be a matrix D = [DT
1 , · · · ,DT

n ]
T ∈ R3n×ℓ ,

where each matrix Di ∈ R3×ℓ is a 3D shape described by
ℓ landmark points

Di =

xi1 xiℓ
yi1 . . . yiℓ
zi1 ziℓ

 ,

and n is the number of 3D training examples. Let Ω =
{ω = (ϕ, θ, ψ)} ⊂ R3 be the set of 3D rotations, where
ω contains the Euler angles. CPA minimizes the following
energy functional:

E2(M,A) =
n∑

i=1

∫
Ω

F2(M,Ai(ω))dω =

=
n∑

i=1

∫
Ω

||PR(ω)Di −Ai(ω)M||2F dω, (3.1)

where M ∈ R2×ℓ is the mean shape and each matrix Ai

in A = [AT
1 , · · · ,AT

n ]
T ∈ R2n×2 , is an affine transforma-

tion. The matrix R ∈ R3×3 corresponds to the Cartesian
parametrization of the 3D rotation depending on the Euler
angle ω and P ∈ R2×3 is the matrix describing the or-
thographic projection onto the plane Z = 0 . Note that for
Euler angles (ϕ, θ, ψ) , dω = sin(θ)dϕdθdψ .

The functional in Eq. (3.1) is similar to the energy func-
tion in Eq. (2.1), with three main differences: (i) the affine
transformations Ai are functions depending on the Euler
angles ω , whereas in Eq. (2.1) Ai are variables, (ii) the
2D shape projection depends directly on the 3D structure of
the object Di and the 3D transformation parameters, (iii) it
is a continuous formulation and discrete sums are replaced
by integrals. We assume the 3D object has been centered
and the translation can be removed. Because it is an ortho-
graphic projection, the Z translations are not modeled but
could be compensated with a scale factor in the projection.

3.2. Optimization for CPA
This section describes an alternating procedure to mini-

mize the CPA energy functional defined in Eq. (3.1):

min
M,A1,...,An

E2(M,A1, . . . ,An). (3.2)

The main difference of the present formulation with re-
spect to PA is that Ai : Ω → R3×3 are functions and
not parameters. Moreover, it is worth noticing that the de-
pendence of E2 with the functions Ai is non-linear. This
makes the minimization of E2 (Eq. (3.2)) a non-linear vari-
ational problem. For simplicity in notation, we will not ex-
plicitly denote the dependency of Ai on ω when it is ob-
vious.

Although from a theoretical point of view the existence
of a solution (M∗,A∗

1, . . . ,A
∗
n) to the problem in Eq. (3.2)

is guaranteed, in general, it may not be easy to find its ex-
plicit expression. For this reason, we propose the follow-
ing alternating minimization algorithm that is guaranteed
to converge to a critical point of the error function (typi-
cally a local minima). First, we start with an initial value
M∗ = M0 and optimize over the functions A1, . . . ,An

obtaining a solution A∗ = [A∗
1
T , . . . ,A∗

n
T ]T . In the next

step, we minimize over M the functional E2(M,A∗) . See
Algorithm 1 for a sketch of the optimization algorithm.

Given an initialization M∗ = M0 ;
while not convergence of {A∗,M∗} do

Step 1: solve A∗ = argminAE2(M
∗,A) ;

Step 2: solve M∗ = argminME2(M,A∗) ;
end

Algorithm 1: CPA optimization algorithm

Step 1: Optimizing E2(M,A) over the functions
Ai, i = 1, . . . , n is a Calculus of Variations prob-
lem that can be solved using the following equation
∇Ai

F2(M,A) = 0, where ∇Ai
is the gradient operator

with respect to the unknown parameters of Ai . The so-
lution of these equations is A∗

i (ω ) = PR(ω )DiM
TL,

where L = (MMT )−1 .



Step 2: To optimize E2(M,A) over M the necessary
condition is ∇ME2(M,A) = 0 .

Given that M and Di do not depend on the rotation,
the functional can be rewritten, involving three definite in-
tegrals, Y(1) ∈ R3×3,Y

(2)
i ∈ R2×2 and Y

(3)
i ∈ R3×2 as

follows:

E2(M,A) =

n∑
i=1

tr
[
DT

i

(∫
Ω

(PR)T (PR)dω
)

︸ ︷︷ ︸
Y(1)

Di+

+MT
(∫

Ω

Ai
TAidω

)
︸ ︷︷ ︸

Y
(2)
i

M− 2DT
i

(∫
Ω

(PR)TAidω
)

︸ ︷︷ ︸
Y

(3)
i

M
]
.

Taking derivatives with respect to M , the first term of the
functional cancels out, therefore, we only need to compute
the integrals Y(2)

i and Y
(3)
i . Let us call X = (PR)TPR ,

and rewrite the integral form as follows:

Y
(2)
i =

∫
Ω

AT
i Aidω = LTMDT

i

(∫
Ω

Xdω
)
DiM

TL,

Y
(3)
i =

∫
Ω

(PR)TAidω =
(∫

Ω

Xdω
)
DiM

TL.

Therefore, to compute the value of these integrals we only
need to solve the definite integral of X . For instance, if we
consider Ω = {(ϕ, θ, ψ) ∈ R3||ϕ|, |θ|, |ψ| ≤ π/2} , then
we obtain:

∫
Ω

Xdω =

 π2

8 + π3

16 0 0

0 π
8 + 3π3

32 0

0 0 −π
8 + π2

8 + 3π3

32


Finally, the solution for M can be expressed as follows:

M∗ =
(∑

i

Y
(2)
i

)−1
(∑

i

(Y
(3)
i )TDi

)
.

4. Experiments
This section reports experimental results to validate the

performance of CPA and compare it to PA. Note that, CPA
only uses 3D training data, whereas PA uses 2D projections
from 3D data.

4.1. Experiment 1
In the first experiment, we used the ”Stanford Bunny”

model from Stanford 3D Scanning Repository 2. The data
consisted of a dense 3D mesh of a real object captured
with a 3D scanner. Figure 2 shows the original 3D shape
model. Figure 3 displays four projections of the model ro-
tated using the angles {ω = (ϕ, θ, ψ) ∈ R3|ϕ = ψ =
0, θ ∈ {0, π/9, 2π/9, 7π/18}} . The model contained 432

Figure 2. The 3D shape model.

Figure 3. Samples of projections in 2D space used for training.
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Figure 4. Reconstruction error for PA (solid line) using training
sets with an increasing number of randomly chosen projections
and reconstruction error for CPA (dashed line) using the 3D shape
model as training set.

landmark points, but for the purpose of visualization, only
frontal landmark points were displayed (linked lines).

In order to compare the performance of PA and CPA,
we computed the CPA reconstruction error and compared
it with the PA reconstruction using different training sets
with increasing number of training samples (number of 2D
projections). The discrete training sets were built using the
2D projections after rotating the 3D objects using a random
sampling of yaw angles in the interval [0, π/2] . The inte-
gration interval for CPA was defined as Ω = {(ϕ, θ, ψ) ∈
R3|ϕ, ψ = 0, 0 ≤ θ ≤ π/2} .

We computed the reconstruction error using the energy
function E1 defined in Eq. (2.1) over the test set, which was
built using the 2D projections after rotating uniformly the
yaw angles between [0, π/2] . In particular, we considered
the following set of Euler angles {ω = (ϕ, θ, ψ) ∈ R3|ϕ =

2http://graphics.stanford.edu/data/3Dscanrep/



(a) (b)

(c) (d)
Figure 5. (a) Mean shape computed using PA. (b) Mean shape
computed using CPA. (c) Visualization of reconstruction error for
PA. (d) Visualization of reconstruction error for CPA. In (c, d) The
lighter colors represent higher errors.

Mean Error (± Std Dev.) Maximum Error
PA 0.19 (± 0.13) 0.06

CPA 0.092 (± 0.08) 0.05
Table 1. Mean and maximum reconstruction error for PA (top row)
and CPA (bottom row) on Bunny data.

ψ = 0, 0 ≤ θ ≤ π/2} , uniformly sampled every π/180
radians.

In Figure 4, the solid line represents the mean recon-
struction error for PA using different training sets with an
increasing size. For each size, the training was repeated 50
times. The dashed line marks the reconstruction error for
CPA. Note that, the mean reconstruction error for PA de-
creases when the size of the training set increases and con-
verged to the continuous error.

Let us show the results of PA when using a training set
made by two random projections and compare them to the
results obtained with CPA. Figure 5 shows the shape models
computed using PA (a) and CPA (b). As can be observed,
the PA model (a) was biased towards a certain direction,
whereas CPA (b) computed an unbiased mean model near
the mean angle π/4 .

We evaluated the reconstruction error in previously un-
trained samples (test set detailed above). Figure 5 (c,d)
shows the reconstructed shape error using PA (c) and
CPA (d) on the sample of the test set corresponfing to pro-
jection of the rotation π/4 . The gray level in the image rep-
resents the error, lighter levels correspond to higher errors.
Note that we had error values for each point of the mesh;
however, for the purposes of visualization we interpolated
to obtain a continuous representation of the error. As can be
observed, the PA model had higher reconstruction errors on
the untrained sample in comparison to the CPA model. This
was expected because the CPA mean was estimated taking
into account more 3D transformations.

Figure 6. Samples of projections in 2D space of faces of the train-
ing set (first row) and the test set (second row).

Table 1 shows quantitative results for the reconstruc-
tion error. In order to provide a relative error measure, we
computed the mean distance between the nearest neighbor
points of the shape mesh (0.0019) and divided the error by
this distance. Table 1 shows the mean error per point with
the standard deviation and the maximum error per point in
the test set for PA and CPA. We can see that the CPA method
had lower reconstruction error in comparison to the PA on
untrained samples.

4.2. Experiment 2

For this experiment, we used 3D face shape models ob-
tained by performing structure from motion on several sub-
jects from the Multi-PIE database [11]. We considered 30
subjects with three different expressions: neutral, smile and
scream (total 90 subjects). See Figure 6 for some examples
of projected shape models.

PA was trained on projections on the plane Z = 0 from
the 90 3D models and CPA was trained on 90 3D shape
models. No rotations were performed on this training set
of models. The integration interval for CPA was defined
as Ω = {(ϕ, θ, ψ) ∈ R3|ϕ, θ = 0, 0 ≤ θ ≤ π/2} . Fig-
ure 6 (first row) displays four projections of the face mod-
els belonging to the training set. The number of landmark
points was 66 , but we linked the landmarks with lines for
better visualization.

The test set was built by projections of rotated models.
In particular, the testing angles were {ω = (ϕ, θ, ψ) ∈
R3|ϕ = ψ = 0, θ = π/4} . Figure 6 (second row) displays
four projections of the test set.

Figure 7 shows the reconstruction performance using PA
and CPA on four of the test samples. PA (first row) was
not able to approximate the changes in yaw due to the un-
trained 3D rotations of the particular test sample. CPA (sec-
ond row) approximated all the projections better, because
functional optimizes over a predefined rotation interval.

Table 2 contains quantitative results of the reconstruc-
tion error for PA and CPA. The error measures were given
in relation to the eye distance for each shape (mean eye dis-
tance = 0.123 ). The second and third columns show the
mean relative error per point with the standard deviation
and maximum relative error per point respectively. As can



Figure 7. Reconstruction performance using PA (first row) and
CPA (second row) on 4 test examples. The solid line represents
the test face and the dashed line the reconstructed face.

Mean Error (± Std Dev.) Max. Error
PA 1.34e-002 (± 2.10e-003) 2.26e-002

CPA 8.19e-004 (± 5.56e-004) 4.81e-003
Table 2. Results of the reconstruction error for PA (top row) and
CPA (bottom row) on facial models.

be seen, CPA outperformed PA.

5. Conclusions and Future Work
This paper proposed CPA, a continuous extension of PA

to learn 2D shape models from one or more 3D objects.
CPA models the 2D rigid deformations resulting from pro-
jections of the 3D object on different viewpoints.

CPA has two main advantages over PA: (i) no need to
generate two dimensional samples, (ii) generate unbiased
2D models. Moreover, it is important to notice that the
memory requirements for CPA are only the storage of the
3D model and the mean parameters. The experimental re-
sults show the advantages of CPA over PA in terms of better
generalization to unseen samples. Currently, we are work-
ing on incorporating a subspace, rather than only the mean,
to complex 3D non-rigid deformations.
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