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Abstract— Continuous, automated monitoring of Parkinsons
Disease (PD) symptoms would provide clinicians with more
information to understand their patients’ disease progression
and adjust treatment protocols, thereby improving PD care.
Collecting precisely labeled data for Parkinson’s symptoms,
such as tremor, is difficult. Therefore, algorithms for monitoring
should only require weakly-labeled training data. In this paper,
we evaluate five standard weakly-supervised algorithms and
propose a “stratified” version of three of the algorithms, which
take advantage of knowing the approximate amount of tremor
within each segment. In particular, we analyze PD tremor
detection performance as training segments increase in length
from 30 seconds to 10 minutes, and labels thereby become less
precise. As segment length increases to 10 minutes, standard
algorithms are not able to discriminate tremor from non-tremor.
However, our stratified algorithms, which can make use of more
nuanced labels, show little decrease in performance as segment
length increases.

I. INTRODUCTION

Chronic neurodegenerative movement disorders like
Parkinson’s Disease (PD) pose a serious threat to the elderly
population. As many as one million Americans (mostly aged
65 or older) live with PD [1], and there is no cure. Medication
can provide symptomatic relief, but patients require larger
and more frequent doses as sensitivity to these drugs de-
creases over time. The current standard of care is as follows:
Patients meet with their doctor every three to six months,
self-reporting on symptoms and response to medication.
Doctors then perform quick motor function assessments by
examining patient performance on motor tasks selected from
Part III of the Unified Parkinson’s Disease Rating Scale
(UPDRS) [2]. Finally, doctors adjust medication dosages as
necessary.

There are several shortcomings to the current state-of-the-
art in PD management: (1) Patient self-reports are often
inaccurate and 15-20 minute clinic visits do not provide
enough information for doctors to accurately assess their pa-
tients; (2) motor function assessments are not only subjective,
but also dependent on the time of day and time since the
last medication intake; and (3) clinic visits are insufficiently
frequent due to their high cost and inconvenience for the
patients. All of these factors make it difficult to monitor
disease progression and adjust treatment protocols.

Continuous PD motor symptom monitoring should lead to
better adjustment of medication and therefore improvements
in patient quality of life. Our eventual goal is to build a
system for continuous monitoring of PD motor symptoms
through wearable sensors, such as accelerometers. The first
step in building such a system is to develop machine learning

Fig. 1. Top row depicts the three camera views (frontal and two sides)
from our experimental setup. Accelerometer locations are circled in red.
In the bottom left, we see a sample signal from the accelerometer with
ground truth tremor events highlighted in pink. Example segments and their
labels are shown below. Note that positive segments indicate the presence
of tremor, but not the exact location. The bottom right image depicts the
Axivity AX3 accelerometer that we are using.

algorithms that can handle the type of data that they will see
during constant home use while users perform activities of
normal daily living. We anticipate that the training data for
such a system will be weakly-labeled because precise labels
(exact start and end of every PD symptom) are not possible
to obtain “in the wild” and laboratory data will not contain
a rich enough set of activities.

This paper offers two main contributions for the detection
of PD tremor, one of the symptoms of Parkinson’s: (1) As a
first step toward designing a data collection of PD motor
symptoms in the wild, we simulate the types of labels
that would be available in such environments and analyze
how the performance of several weakly-supervised learning
algorithms degrades as labels become less precise. (2) We
provide a simple modification to existing weakly-supervised
learning algorithms that allow them to take advantage of
labels containing the approximate percentage of tremor (e.g.,
0-24%, 25-49%, 50-74%, 75-100%) within a segment.

Our analysis finds that once time segments are 10 minutes
long, the standard algorithms are not able to discriminate
tremor from non-tremor. However, our modified algorithms,
which make use of more nuanced labels, show little de-

978-1-5090-2809-2/17/$31.00 ©2017 IEEE 143



crease in performance as the segment length increases to 10
minutes. This result implies that, for future in-home studies
where subjects will be asked to label their own data, 10-
minute time segments are sufficiently short (provided sub-
jects can accurately label them) for the learning algorithms,
and that subjects should try to label the approximate amounts
of tremor within those segments.

II. RELATED WORK

Although many researchers have explored the use of wear-
ables in detecting or evaluating PD motor symptoms, little
work has been done on detecting symptoms continuously
in the wild. Experiments that included unscripted activities
were generally restricted to a maximum of 4-hour long data
collections. Some experiments were conducted in research
participants’ homes over periods of one month [3], [4], or
even longer, as in the mPower Mobile Parkinson Disease
Study [5]. In these cases, however, participants were only
evaluated when they performed specific tasks, rather than
continuously throughout the day.

We believe the main limitation for detecting symptoms in
the wild is the difficulty of obtaining precise labels (i.e., the
exact start and end of tremor events). Coarse labels, such as
whether tremor events occur within a larger time segment
or not, are a feasible solution. Data with these imprecise
labels are called weakly-labeled. While weakly-supervised
learning methods are relatively well-explored (see [6] for
a review), few have applied these methods to PD symptom
detection. In [7], Fisher et al. used a neural network to detect
dyskinesia in weakly-labeled data collected in the homes of
subjects with PD. However, the authors applied the labels of
their one-hour time intervals to every sub-interval. That is, if
a subject reported the occurrence of dyskinesia events during
a one-hour segment, the authors assumed that dyskinesia
was constantly present during the entire segment. This naive
approach introduces many false positive labels. In this work,
we compare the naive approach to several algorithms that
explicitly account for the fact that only a portion of a positive
segment is the event of interest.

Most similar to our work here is that of Das et al., who
compared several weakly-supervised learning techniques on
in-home data collected from two subjects [8]. One subject
experienced dyskinesia and the other had tremor. Four days
of data were collected and subjects labeled their data using
paper diaries. While this work served as a proof-of-concept
for the utility and necessity of weakly-supervised learning
for data collected in the wild, the number of subjects was
limited (only one per symptom type) and there was no way to
verify that symptoms detected in the wild were true symptom
occurrences because there were no ground truth labels.

In this work, we extend that of Das et al. [8], providing a
more thorough exploration into the effect of weak-labels on
algorithm performance. We have collected a larger dataset
in a laboratory environment of subjects who all experience
tremor. This dataset allows us to perform leave-one-subject-
out validation to test the generalizability of the algorithms.
Using the associated video data, we have annotated the start

TABLE I
SET OF ACTIONS PERFORMED DURING DATA COLLECTION

Action Approximate time (minutes)

Sit and talk 5
Rest tremor* (UPDRS 3.17) 3
Postural tremor* (UPDRS 3.15) 6
Kinetic tremor (UPDRS 3.16) 2
Finger tapping (UPDRS 3.4) 1
Open/close hands (UPDRS 3.5) 1
Pronation/supination of the hands 1

(UPDRS 3.6)
Writing 4
Typing 4
Playing chess 10
Playing cards 10
Making a sandwich 5
Eating a sandwich 10
Drinking from a cup 1
Walking 2

* denotes the inclusion of a cognitive distractor, which consisted of counting backwards
by 7’s from 100.
Note: UPDRS item numbers correspond to those given in [2]

and end of each tremor event to serve as the ground truth.
We can thus simulate different levels of weak-supervision by
controlling the length of the time segment for which labels
are provided, and analyze how algorithm performance drops
as label uncertainty increases. Furthermore, since ground
truth labels exist, we can confirm whether algorithms trained
on weakly-labeled data are able to discriminate tremor from
non-tremor.

III. METHODS

In this section, we describe our experimental setup for
comparing several different algorithms and their performance
on labeled time segments of varying lengths. We first
describe our methods for computing feature vectors from
the data and assigning labels to the segments. We then
describe the algorithms we compared and our modification,
which allows the algorithms to use labels describing the
approximate amount of tremor within each segment. Finally,
we describe our protocol for splitting the data into training
and test sets.

A. Data Collection

Data were collected from four male and one female
subject, who had been diagnosed with Parkinson’s disease
two to four years prior. Each subject experienced tremor
in one or both hands. The subjects wore one Axivity AX3
accelerometer on each wrist while they completed several
actions, some of which were taken from the UPDRS, and
others from daily living (see Table I for a complete list).
Data were collected at 100 Hz. Three cameras were used to
record the subjects so as to minimize occlusion. These video
data were used to annotate tremor events, thereby providing
ground truth data. Figure 1 depicts our experimental setup.
Table II shows a summary of the collected, labeled data. This
research was approved by the Carnegie Mellon University
Institutional Review Board.
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TABLE II
SUMMARY OF COLLECTED DATA

Subject # Labeled Seconds % Tremor Events

1 6552 70.3
2 6626 52.1
3 10560 45.4
4 11158 18.5
5 12698 14.6

Total 47594 (∼ 13.2 hours) 40.2

Note: Each hand is treated as a separate signal so the number of labeled seconds is
twice the time of the recording

B. Features and Labels

Previous work on automated tremor detection [9]–[13]
generally use very similar features. In this work, we used the
same features as those described by Patel et al. [13]. Features
were computed over two-second windows of the signal with
one-second overlap. Each window was considered to be
tremor if at least half of the window was tremor.

Consecutive windows were collected into segments of
varying lengths (from 30 seconds to 10 minutes). Segments
were labeled with two different methods:

• Standard method – positive if the segment contained at
least one “tremor” window (event), negative otherwise.

• Stratified method – approximate percentage of tremor
(e.g., 0-24%, 25-49%, 50-74%, 75-100%) within the
segment.

C. Algorithms

For our experiments, we compare the performance of
several different algorithms. In particular, we chose to com-
pare the top three performing algorithms reported by Das
et al. [8] – Multiple Instance Support Vector Machine (MI-
SVM) [14], Iterative Discriminative Axis Parallel Rectan-
gle (ID-APR) [15] and Expectation Maximization Diverse
Density (EM-DD) [16]. Given the recent successes of neural
networks in machine learning, we also included the Multiple
Instance Neural Network (MI-NN) algorithm [17]. We com-
pare these weakly-supervised techniques to a naive Support
Vector Machine (Naive-SVM) baseline, which applies that
segment-level labels to every subsegment within. That is, if
a segment is labeled as containing some tremor, Naive-SVM
assumes the entire segment consists of tremor.

We also propose a modification to the MI-SVM, ID-APR
and MI-NN algorithms that allows them to take advantage of
knowing the approximate amount of tremor within a segment
given by stratified segment labels. In our data collection,
we found that the incidence of tremor varied greatly across
subjects (from 14.5% to 70.3% occurrence), as shown in
Table II. The MI-SVM, ID-APR and MI-NN algorithms are
biased towards finding rare positive examples among many
negative examples – an assumption that holds well for subject
5, but which fails for subject 1. For subjects with frequent
tremor, these algorithms may have low recall because they
will classify very few events as tremor.

Performance of these algorithms could be improved if
they had access to slightly more nuanced labels, such as our

TABLE III
PERCENTAGE OF EACH TYPE OF SEGMENT LABEL FOR VARYING

SEGMENT LENGTHS

Segment Standard labels Stratified labels
length Positive Negative 0-24% 25-49% 50-74% 75-100%

30 s 65.4 34.6 53.0 13.5 10.4 23.1
1 min 76.0 24.0 51.0 16.5 13.6 18.9
3 min 91.9 8.1 47.9 19.7 16.2 16.2
5 min 94.2 5.8 43.9 25.8 16.8 13.6

10 min 97.3 2.7 41.9 29.7 12.2 16.2

stratified labels, which contain the approximate percentage
of tremor within a time segment (e.g., 0-24%, 25-49%, 50-
74%, 75-100%). In the scenario where subjects are labeling
their own in-home data, these stratified segment labels could
correspond to labels of “almost no tremor,” “not much
tremor,” “a lot of tremor,” and “almost constant tremor.”

In addition to containing more information, these stratified
labels also have the advantage that they are symmetric be-
tween tremor and non-tremor. In contrast, because increased
segment length is associated with a higher likelihood of
tremor occurring within, labeling segments with the standard
method results in a lower incidence of negatively labeled
segments as segment length increases. This lack of negative
examples can make it difficult for an algorithm to discrimi-
nate between tremor and non-tremor. The proportion of each
type of stratified label, however, remains relatively constant
as segment length increases (see Table III).

MI-SVM, ID-APR, and MI-NN are all solved by iterating
between choosing a single event from each positive segment
to serve as a positive selector variable (all events in negative
segments are considered negative selector variables) and
solving the decision boundary given the selector variables.
Modifying these algorithms to use stratified labels simply
involves changing the number of selector variables pulled
from each bag. The number of positive and negative selector
variables is adjusted according to the segment label. For
example, given a segment with a label of 50-74%, we know
that at least 50% of the segment must be tremor events,
and at least 25% of the segment must be non-tremor events.
Therefore, the highest scoring 50% of the events are chosen
to be positive selector variables, and the lowest scoring 25%
are chosen to be negative selector variables. The algorithm
is then trained on these selector variables as normal. For a
naive baseline using these labels, we assign positive labels
to segments with at least 50% tremor, negative labels to the
rest, and then apply the naive assumption to the events in
these segments and train a linear SVM.

We call these modified algorithms “stratified” and they are
closely related to work on learning from label proportions
(LLP) [18]–[20]. Much of the work in LLP involves new,
probabilistic models that assume the exact proportions of
positive to negative events are known. Kück and de Freitas al-
low for uncertainty in the proportions, but do so by introduc-
ing a user-specified parameter to represent this uncertainty
[19]. In contrast, our solution is a simple modification of
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existing algorithms given approximate proportions of labels
with no additional parameter.

D. Algorithm Training and Testing Protocol

Data were split into training and testing sets using leave-
one-subject-out cross-validation: Data from one subject were
left out and the algorithm was trained on data from the
remaining subjects. This process was repeated for each
subject. Results were averaged across subjects.

IV. RESULTS AND DISCUSSION

The goal of this work is to explore how the performance
of weakly-supervised algorithms degrades as labels become
less precise (time segments become longer). We plan to use
the results presented here to inform a future data collection in
the wild, where we envision subjects assigning coarse labels
(presence/absence of tremor, or the approximate amount of
tremor) to short time segments throughout the day.

A. Standard Metrics

We compared the performance of the algorithms on five
standard metrics:

Accuracy =
# correctly classified

# events
,

F1-score = 2 · Precision · Recall
Precision + Recall

,

Precision =
# true positives

# classified as positive
,

Recall =
# true positives

# ground truth positive events
,

Specificity =
# true negative

# ground truth negative events
.

These performance metrics were computed on event-level la-
bels (as opposed to segment-level labels) to measure whether
the algorithms were able to discriminate tremor from non-
tremor after being trained on the weakly-labeled data.

Algorithm performance is summarized in Figure 2. As
expected, performance generally falls as the segment length
increases because the labels become less precise. We can
see that the Naive-SVM algorithm fails once input segments
become three minutes long: specificity falls to zero, implying
that the algorithm has converged to classifying everything as
positive (tremor). This failure demonstrates the necessity of
weakly-supervised algorithms for accommodating weakly-
labeled data. We can also see that, contrary to what Das
et al. found [8], the performance of ID-APR is generally
worse that MI-SVM and EM-DD. In fact, at 3-minute-length
segments, the recall of ID-APR has fallen to nearly zero,
implying that it is classifying nearly everything as non-
tremor.

For 10-minute-length segments, we see that the non-
stratified algorithms have nearly converged to classifying
everything as positive (specificity = 0) or negative (re-
call = 0). In contrast, the stratified algorithms (excluding the
naive version) avoid this behavior. We see the usual trade-off
between recall and specificity. However, it is interesting to
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Fig. 2. Standard performance metrics computed on all seven algorithms
over varying lengths of training time segments

note that while all four have similar precision (proportion
of the events classified as tremor that were true tremor),
the recall of the stratified Naive-SVM algorithm is much
lower (it is less able to find tremor). Using these metrics
it is not clear which of the stratified methods should be
preferred, although MI-NN does show better performance in
four of the five metrics. However, our proposed performance
metric (described below) is able to shed light on which is
the superior algorithm.

B. Proposed Performance Metric

We believe that clinicians may find the amount of tremor
that occurred within a given period of time to be more
informative than whether a particular instant is tremor or
not. Therefore, the error in the detected percentage of tremor
within a window versus the true percentage of tremor may
be a more clinically relevant performance metric. We chose
15-minute windows because this resolution is short enough
to give information about the effect of a patient’s medication
while remaining easily interpretable by the clinician. Table
IV shows the mean absolute error in detected tremor for all
nine algorithms as they are trained on segments of varying
length. We can see that the stratified MI-NN algorithm
generally shows the best performance in this metric, although
the stratified MI-SVM algorithm is a close second.

V. CONCLUSION AND FUTURE WORK

In this work, we took the first step toward developing a
system for automated, continuous monitoring of PD motor
symptoms. We simulated the types of labels that will be
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TABLE IV
MEAN ABSOLUTE ERROR OF DETECTED TREMOR PERCENTAGE WITHIN

15 MINUTE WINDOWS

Training segment length
Algorithm 30 s 1 min 3 min 5 min 10 min

Naive-SVM 45.5 23.8 64.3 64.3 63.7
MI-SVM 22.9 23.4 28.7 25.1 30.6
ID-APR 18.0 20.8 33.0 34.4 35.9
MI-NN 14.7 17.4 24.3 19.6 30.2
EM-DD 16.8 19.8 45.2 41.7 53.0
Naive-SVM stratified 19.3 18.8 20.1 22.8 28.4
MI-SVM stratified 13.9 16.1 16.2 17.6 19.0
ID-APR stratified 42.2 36.3 31.7 30.4 31.0
MI-NN stratified 13.2 14.7 18.0 16.3 14.2

available in the second, in-home phase of this study and
compared the ability of several algorithms to learn from
these weak labels. Using our finely-labeled dataset from five
subjects, we could control the length of the training segments
and thereby analyze how algorithm performance degraded as
labels were made less precise. Furthermore, because we have
ground truth labels for every time point, we were able to
evaluate the ability of the algorithms to discriminate tremor
from non-tremor events. This work thus serves to extend
that of Das et al. [8], where only two subjects were used
(each with a different motor symptom) and where ground
truth labels were not available. We also developed a novel
modification to MI-SVM, ID-APR, and MI-NN, which allow
them to take advantage of knowing the approximate amount
of tremor within a given time segment.

Our analysis resulted in two main findings. (1) Contrary
to that reported in Das et al. [8], ID-APR did not have
the best performance. We believe our results differ due to
our more thorough analysis of multiple performance metrics
and our larger dataset. (2) Our novel, stratified algorithms
generally showed improved performance over their standard
counterparts, particularly as the segment length increased.
We found that the stratified version of MI-NN gave the best
performance overall.

In future work, we plan to test these learning algorithms
on data collected in the wild, which would be labeled by
the research participants themselves. Our findings suggest
10-minute length segments are short enough for algorithms
to learn from, provided participants label the approximate
amount of tremor within.
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