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Abstract— Facial action units (AU) are the fundamental units
to decode human facial expressions. At least three aspects affect
performance of automated AU detection: spatial representation,
temporal modeling, and AU correlation. Unlike most studies that
tackle these aspects separately, we propose a hybrid network
architecture to jointly model them. Specifically, spatial repre-
sentations are extracted by a Convolutional Neural Network
(CNN), which, as analyzed in this paper, is able to reduce
person-specific biases caused by hand-crafted descriptors (e.g.,
HOG and Gabor). To model temporal dependencies, Long
Short-Term Memory (LSTMs) are stacked on top of these
representations, regardless of the lengths of input videos. The
outputs of CNNs and LSTMs are further aggregated into a
fusion network to produce per-frame prediction of 12 AUs.
Our network naturally addresses the three issues together, and
yields superior performance compared to existing methods that
consider these issues independently. Extensive experiments were
conducted on two large spontaneous datasets, GFT and BP4D,
with more than 400,000 frames coded with 12 AUs. On both
datasets, we report improvements over a standard multi-label
CNN and feature-based state-of-the-art. Finally, we provide
visualization of the learned AU models, which, to our best
knowledge, reveal how machines see AUs for the first time.

I. INTRODUCTION

Facial actions convey information about a person’s emo-

tion, intention, and physical state, and are vital for use

in studying human cognition and related processes. To en-

code such facial actions, the Facial Action Coding System

(FACS) [10] is the most comprehensive. FACS segments

visual effects of facial activities into action units (AUs),

providing an essential tool in affective computing, social

signal processing and behavioral science. Such AUs have

shown powerful descriptions in universal expressions and

led to discoveries in many areas such as marketing, mental

health, and entertainment.

A conventional pipeline of automated facial AU detection

compiles four major stages: face detection �→ alignment �→
representation �→ classification. With the progress made in

face detection and alignment, most research nowadays fo-

cuses on features, classifiers, or their combinations. However,

due to slow-growing rate in the amount of FACS-coded

data, it remains unclear how to pick the best combination

that generalizes across subjects and datasets. At least three

aspects affect the performance of automated AU detection:

(1) Spatial representation: Engineered features, e.g., HOG,

induce person-specific biases in AU estimation, and hence of-

ten require sophisticated models to reduce such effects (e.g.,

[3], [26], [37]). A good representation must generalize to

unseen subjects, regardless of individual differences caused

by behavior, facial morphology or recording environment.
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Fig. 1. An overview of the proposed hybrid deep learning framework:
The proposed network possesses both strengths of CNNs and LSTMs to
model and utilize both spatial and temporal cues. Then, a fusion network
is employed to combine both cues to produce frame-based prediction.

(2) Temporal modeling: Temporal cues are crucial for iden-

tifying AUs, due to the ambiguity and dynamic nature of

facial actions. However, it remains unclear how temporary

context can be effectively encoded and recalled. (3) AU

correlation: The presence of AUs influences each other due

to the underlying use the same group of facial muscles.

For instance, AU12 suggests a co-occurrence of AU6, and

reduces the likelihood of AU15. Such correlation helps a de-

tector determine one AU given others. Despite the seemingly

unrelated nature of these aspects, this paper shows that it is

possible and better to consider them jointly. One intuition is

that a good representation helps learn temporal models and

AU correlations, and knowing AU correlations could benefit

learning of representation and temporal cues. Most existing

studies, however, address these aspects separately, and thus

are unable to fully capture their entangled nature.

To address the above issues, this paper proposes a hybrid

network architecture that models both spatial and temporal

relationships from multiple AUs. The proposed network is

appealing for naturally modeling the three complementary

aspects. Fig. 1 gives an overview of the proposed framework.

To learn a generalizable representation, a CNN is trained

to extract spatial features. As analyzed in this study, such

features reduce the ubiquitous person-specific biases in hand-

crafted features [3], [26], [37], and thus offer possibilities

to reduce the burden of designing sophisticated classifiers.

To capture temporal dependencies, LSTMs are stacked on

top of the spatial features. Lastly, we aggregate the output
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scores from both CNNs and LSTMs into a fusion network

to predict 12 AUs for each frame. Extensive experiments

were performed on two spontaneous AU datasets, GFT and

BP4D, containing totally >400,000 frames. We report that

the learned spatial features, further combined with temporal

information, outperform a standard CNN and feature-based

state-of-the-art methods. In addition, we visualize notions of

each AU learned by the model, which, to our best knowledge,

reveal how machines see facial AUs for the first time.

II. RELATED WORK

Below we review contemporary issues in automated facial

AU detection and success in deep networks.

Facial AU detection: Despite advances in features, clas-

sifiers, and their combinations [6], [23], [27], [32], three

important aspects reside in automated AU detection. The first

aspect is spatial representation, which is typically biased

to individual differences such as appearance, behavior or

recording environments. These differences produce shifted

distributions in feature space (i.e., covariate shift), hindering

the generalizability of pre-trained classifiers. To reduce distri-

bution mismatch, several studies merged into personalization

techniques. Chu et al. [3] personalized a generic classifier by

iteratively reweighting training samples based on relevance

to a test subject. Along this line, Sangineto et al. [26]

directly transferred classifier parameters from source subjects

to a test one. Zeng et al. [39] adopted an easy-to-hard

strategy by propagating confident predictions to uncertain

ones. Yang et al. [37] further extended personalization for

estimating AU intensities by removing a person’s identify

with a latent factor model. Rudovic et al. [25] interpreted the

person-specific variability as a context-modeling problem,

and propose a conditional ordinal random field to address

context effects. Others sought to learn AU-specific facial

patches to specialize the representation [41], [42]. However,

while progress has been made, these studies still resort to

hand-crafted features. We argue that person-specific biases

from such features can be instead reduced by learning them.

Another aspect remains in temporal modeling, as modeling

dynamics is crucial in human-like action recognition. To

explore temporal context, graphical models have been popu-

larly used for AU detection. A hidden CRF [1] classified over

a sequence and established connections between the hidden

states and AUs. These models made Markov assumption

and thus lacked consideration of long-term dependencies.

As an alternative, switching Gaussian process models [2]

was built upon dynamic systems and Gaussian process to

simultaneously track motions and recognize events. However,

the Gaussian assumption unnecessarily holds in real-world

scenarios. In this paper, we attempt to learn long-term depen-

dencies to improve predicting AUs without the requirement

to a priori of state dependencies and distributions.

Last but not least, it has attracted an increasing attention

on how to effectively incorporate AU correlations. Due to the

fact that AUs could co-occur simultaneously within a frame,

AU detection by nature is a multi-label instead of a multi-

class classification problem as in holistic expression recogni-

tion, e.g., [9], [21]. To capture AU correlations, a generative

dynamic Bayesian networks (DBN) [31] was proposed with

consideration of their temporal evolutions. Rather than learn-

ing, pairwise AU relations can be statistically inferred using

annotations, and then injected into a multi-task framework to

select important patches per AU [41]. In addition, a restricted

Boltzmann machine (RBM) [33] was developed to directly

capture the dependencies between image features and AU

relationships. Following this direction, image features and

AU outputs were fused in a continuous latent space using

a conditional latent variable model [11]. For the scenario

with missing labels, a multi-label framework can be applied

by enforcing the consistency between the prediction and

the annotation and thetsmooth of label assignment [35].

Although improvements can be observed from predicting

multiple AUs jointly, these approaches rely on engineered

features such as HOG, LBP, or Gabor.
Deep networks: Recent success of deep networks sug-

gests strategically composing nonlinear functions results in

powerful models for perceptual problems. Closest to our

work are the ones in AU detection and video classification.
Most deep networks for AU detection directly adapt

CNNs. Gadi et al. [14] used a 7-layer CNN for estimating

AU occurrence and intensity. Ghosh et al. [12] showed that

a shared representation can be directly learned from input

images using a multi-label CNN. To incorporate temporal

modeling, Jaiswal et al. [15] trained CNNs and BLSTM

on shape and landmark features to predict for individual

AUs. Because input features were predefined masks and

image regions, unlike this study, gradient cannot backprop

to full face region to analyze per-pixel contributions to each

AU. In addition, it ignored AU dependencies and temporal

info that could improve performance in video prediction,

e.g., [29], [36]. On the contrary, our network simultaneously

models spatial-temporal context and AU dependencies, and

thus serves as a more natural framework for AU detection.
The construction of our network is inspired by recent

studies in video classification. Simonyan et al. [29] proposed

a two-stream CNN that considers both static frames and

motion optical flow between frames. A video class was

predicted by fusing scores from both networks using either

average pooling or an additional SVM. To incorporate “tem-

porally deep” models, Donahue et al. [8] proposed a general

recurrent convolutional network that combines both CNNs

and LSTMs, which can be then specialized into tasks such as

activity recognition, image description and video description.

Similarly, Wu et al. [36] used both static frames and motion

optical flow, combined with two CNNs and LSTMs, to

perform video classification. Video-level features and LSTM

outputs were fused to produce a per-video prediction.
Our approach fundamentally differs from the above net-

works in several aspects: (1) Video classification is a multi-

class classification problem, yet AU detection is multi-

label. (2) Motion optical flow is usually useful in video

classification, but not in AU detection due to large head

movements. (3) AU detection requires per-frame detection;

video classification produces video-based prediction.
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conv1: 96x11x11x3 

conv3: 72x3x3x96

conv4: 48x3x3x72

conv5: 32x3x3x48

pool1: 96x2x2x1

fc6: 4096

fc7: 4096

fc8: 12

conv2: 96x5x5x96

(c) (d)

(e)

Fig. 2. The structure of the proposed hybrid network: (a) Folded illustration of Fig. 1, showing 3 components of learning spatially representation, temporal

modeling, and spatiotemporal fusion, (b) our 8-layer CNN architecture, and (c) the schematic of an LSTM block. (d)-(e) Visualization of conv1 layers
of models trained on ImageNet [19] and GFT datasets, respectively. As can be seen, filters learned on our face dataset contain less color blob detectors,
suggesting color is less informative in AU detection. (best view in color)

III. THE HYBRID NETWORK FOR MULTI-LABEL FACIAL

AU DETECTION

Fig. 2(a) shows a folded illustration of the hybrid network.

Below we describe each component in turn.

A. Learning spatial representation

The literature has shown evidence that hand-crafted fea-

tures impair generalization of AU detectors [3], [26], [37].

We argue that specialized representation could be learned

to reduce the burden of designing sophisticated models, and

further improve performance. On the other hand, some AUs

co-occur frequently (e.g., AUs 6+12 in a Duchenne smile),

and some infrequently. Classifiers trained with such relation

are likely to lead to more reliable results [11], [35], [41]. To

these two ends, we train a multi-label CNN by modifying

the AlexNet [19] as shown in Fig. 2(b). Given a ground truth

label y ∈ {−1, 0,+1}L (−1/+1 indicates absence/presence

of an AU, and 0 missing label) and a prediction vector

ŷ ∈ R
L for L AU labels, this multi-label CNN aims to

minimize the multi-label cross entropy loss:

LE(y, ŷ) =
−1

L

L∑
�=1

[y� > 0] log ŷ� + [y� < 0] log(1− ŷ�),

where [x] is an indicator function returning 1 if x is true, and

0 otherwise. The outcome of the fc7 layer is L2 normalized

as the final representation, resulting in a 4096-D vector. We

denote this representation “fc7” hereafter. Due to dropout and

ReLu, fc7 feature contains ∼35% zeros out of 4096 values,

resulting in a significantly sparse vector. The proposed multi-

label CNN is similar to Ghosh et al. [12] and AlexNet

[19], with slightly different architecture and purpose. Ghosh

et al. [12] took 40×40 images as input, which, in our

experience, can be insufficient for recognizing subtle AUs on

the face. AlexNet [19] was designed for object classification,

yet, for structured face images, the original design can be an

overkill and cause overfitting. Instead, we train our modified

network from scratch. Fig. 2(d) visualizes the learned kernels

from the conv1 layer on the ImageNet and the GFT datasets.

As can be seen, the kernels learned on GFT contain less color

blob detectors than the ones learned on ImageNet [19]. This

suggests color info is less useful in facial objects than in

natural images. In Sec. IV, we will empirically evaluate fc7

against hand-crafted features such as HOG or Gabor.

B. Temporal modeling with stacked LSTMs

It is usually hard to tell an “action” by looking at only a

single frame. Having fc7 extracted, we use stacked LSTMs

[13] for learning such temporal context. Fig. 2(c) shows the

schematic of a standard LSTM block. Due to an absence of

theory in choosing the number of LSTM layers and size

of each memory cell, we took an empirical approach by

considering the tradeoff between accuracy and computational

cost. It ended up with 3 stacks of LSTMs with 256 memory

cells each. One benefit of LSTM is its ability of encoding

crucial information during the transition between two frames.

Unlike learning spatial representation on fixed and cropped

images, videos can be difficult to be modeled with a fixed-

size architecture, e.g., [1], [18]. LSTM serves as an ideal

model for avoiding the well-known “vanishing gradient”

effect in recurrent models, and makes it possible to model

long-term dependencies.

Recurrent LSTMs: Denote a sequence of input frames

as (x(1), . . . ,x(T )), and their labels as (y(1), . . . ,y(T )),
where superscripts indicate time steps. A recurrent model

is expressed by iterating the equations from t = 1 to T :

h(t) = H(Wxhx
(t) +Whhh

(t−1) + bh), (1)

y(t) = softmax(Whyh
(t) + by), (2)

where W denotes weight matrices, b denotes bias vectors,H
is the hidden layer activation function (typically the logistic

sigmoid function), and the subscripts {x, h, y} denote the

(input,hidden,output) layers respectively. LSTM replaces the

hidden nodes in the recurrent model with a memory cell,

which allows the recurrent network to remember long term

context dependencies. Given an input vector x(t) at each time

t and the hidden state from previous time h(t−1), we denote

a linear mapping as:

φ
(t)
� = W�x

(t) +R�h
(t−1) + b�, (3)

where W is the rectangular input weight matrices, R is

the square recurrent weight matrices, and � denotes one

of LSTM components {c, f, i, o}, i.e., cell unit, forget

gate, input gate, and output gate. Element-wise activation

functions are applied to introduce nonlinearity. Gate units

often use a logistic sigmoid activation σ(a) = 1
1+e−a ;

cell units are transformed with hyperbolic tangent tanh(·).
Denote the point-wise multiplication of two vectors as �,
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LSTM applies the following update operations: (block input)

z(t) = tanh(φ
(t)
c ), (forget gate) f (t) = σ(φ

(t)
f ), (input

gate) i(t) = σ(φ
(t)
i ), (output gate) o(t) = σ(φ

(t)
o ), (cell

state) c(t) = i(t) � z(t) + f (t) � c(t−1), and (block output)

h(t) = o(t)�tanh(c(t)). As seen in the update of cell states,

an LSTM cell involves summation over previous cell states.

The gradients are distributed over sums, and propagated over

a longer time before vanishing. Because AU detection is

by nature a multi-label classification problem, we optimize

LSTMs to jointly predict multiple AUs according to the

maximal-margin loss:

LM (y, ŷ) =
1

n0

∑
i

max(0, λ− yiŷi), (4)

where λ is a pre-defined margin, and n0 indicates the number

of non-zero elements in ground truth y. Although typically

λ=1 (such as in regular SVMs), here we empirically choose

λ = 0.5 because the activation function has squeezed the

outputs into [−1, 1], making the prediction value never go

beyond λ=1. During back propagation, we pass the gradient
∂L
∂ŷi

= − yi

n0

if yiŷi < 1, and ∂L
∂ŷi

= 0 otherwise. At each time

step, LSTMs output a vector indicating potential AUs.

Practical issues: There has been evidence that a deep

LSTM structure preserves better descriptive power than a

single-layer LSTM [13]. However, because fc7 features are

of high-dimension (4096-D), our design of LSTMs can lead

to a large model with >1.3 million parameters. To ensure

that the number of parameters and the size of our datasets

maintain the same order of magnitude, we applied PCA to

reduce the fc7 features to 1024-D (preserving 98% energy).

We set dropout rate as 0.5 to the input and hidden layers,

resulting in a final model of ∼0.2 million parameters. More

implementation details are in Sec. IV.

C. Frame-based spatiotemporal fusion

The spatial CNN performs AU detection from still video

frames, while the temporal LSTM is trained to detect AUs

from temporal transitions. Unlike video classification that

produces video-based prediction (e.g., [8], [29], [36]), we

model the correlations between spatial and temporal cues

by adding an additional fusion network. We modify the

late fusion model [18] to achieve this goal. Fig. 1 shows

an illustration. For each frame, two fully connected layers

with shared parameters are placed on top of both CNNs

and LSTMs. The fusion network merges the stacked L2-

normalized scores in the first fully connected layer. In ex-

periments, we see this fusion approach consistently improves

the performance compared to CNN-only results.

IV. EXPERIMENTS

A. Datasets

We evaluated the proposed hybrid network on two large

spontaneous datasets: BP4D [40] and GFT [4]. Each dataset

was FACS-coded by certified coders. AUs occurring more

than 5% base rate were included for analysis. In total, we

selected 12 AUs to perform the experiments, resulting in

>400,000 valid frames. Unlike previous studies that suffer

from scalability issues and require downsampling of training

data, the network is in favor of large dataset so we made

use of all available data. Note that the CK+ benchmark [22]

is not applicable because the AU annotations were given at

video-level, while we aim at per-frame prediction.

BP4D [40] is a spontaneous facial expression dataset in

both 2D and 3D videos. The dataset includes 41 participants

associating with 8 interviews. Frame-level ground-truth for

facial actions are obtained using the FACS. In our experi-

ments, we used 328 2D videos from 41 participants, resulting

in 146,847 available frames with AU coded. We selected

positive samples as those with intensities equal or higher

than A-level, and negative samples as the remaining.

GFT [4] contains 240 groups of three previously unac-

quainted young adults. Moderate out-of-plane head motion

and occlusion are presented in the videos, making AU

detection challenging. We used 50 participants with each

containing one video of about 2 minutes (∼5000 frames),

resulting in 254,451 available frames with AU coded. Frames

with intensities equal or greater than B-level are used as

positive, otherwise, intensities less than B-level are negative.

B. Settings

Pre-processing: We pre-processed all videos by extracting

facial landmarks using IntraFace [5]. Tracked faces were

registered to a reference face using similarity transform, re-

sulting in 200×200 face images, which were then randomly

cropped into 176×176 and/or flipped for data augmentation.

Each frame was labeled +1/−1 if an AU is present/absent,

and 0 otherwise (e.g., lost face tracks or occluded face).

Dataset splits: For both datasets, we adopted a 3-fold

and a 10-fold protocol. For 3-fold protocol, each dataset

was evenly divided into 3 subject-exclusive partitions. We

iteratively trained a model using two partitions and evaluated

on the remaining one, until all subjects were tested. For

10-fold protocol, we followed standard train/validation/test

splits as in the deep learning community (e.g., [19], [29],

[36]). In specific, we divided entire dataset into 10 subject-

exclusive partitions, where 9 for training/validation and 1

for test. For both protocols, we used ∼20% training subjects

for validation. By comparing 3-fold and 10-fold, we hope to

examine the performance v.s. the number of training samples

because the 10-fold protocol uses ∼30% more samples than

the 3-fold. To measure the transferability of fc7 features, we

also performed a cross-dataset protocol by training CNNs

on one dataset and using it to extract spatial representations

for training a classifier on another.

Evaluation metrics: We reported performance using

frame-based F1-score (F1-frame= 2RP
R+P

) for comparisons

with the literature, where R and P denote recall and preci-

sion, respectively. Other options of metrics include F1-norm,

which computes a skew-normalized F1-frame by multiplying

false negatives and true negatives by the factor of skewness

(the ratio of positive samples over negative ones). In addition,

because AUs occur as temporal signals, an event-based

F1 (F1-event= 2ER·EP
(ER+EP ) ) can be used to measure detection

performance at segment-level, where ER and EP are event-
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Fig. 3. A visualization of t-SNE
embedding using HOG, VGG face
descriptor [24] and fc7 features on
the BP4D dataset [40] by coloring
each frame sample in terms of AU12
(top row) and subject identities (bot-
tom row). The clustering effect in
HOG and VGG face descriptors re-
veal their encoded information about
not only facial AUs but more subject
identities. As can be seen, the sepa-
ration between subjects of VGG de-
scriptors is more clear than the sepa-
ration of HOG, because VGG face
descriptors were originally trained
for face recognition. On the other
hand, the learned fc7 features are
optimized for multi-label AU clas-
sification, and thus reduce the in-
fluence caused by individual differ-
ences. More importantly, fc7 features
maintain the grouping effect on sam-
ples of the same AU, implying its
ability of capturing necessary infor-
mation for AU classification. (best
viewed in color)

based recall and precision as defined in [7]. Different metrics

capture different properties about the detection performance.

Choices of one or another metric depend on a variety

of factors, such as purposes of the task, preferences of

individual investigators, the nature of the data, etc. Due to

space limitation, we only reported F1 in this paper.

Network settings and training: We trained the CNNs

with mini-batches of 196 samples, a momentum of 0.9

and weight decay of 0.0005. All models were initialized

with learning rate of 1e-3, which was further reduced

manually whenever the validation loss stopped decreasing.

The implementation was based on the Caffe toolbox [16]

with modifications to support multi-label cross-entropy loss.

For training LSTMs, we set an initial learning rate of 1e-

3, momentum of 0.9, weight decay 0.97, and RMSProp

for stochastic gradient descent. All gradients were com-

puted using back-propagation through time (BPTT) on 10

subsequences randomly sampled from training video. All

sequences were 1300 frames long, and the first 10 frames

were disregarded during the backward pass, as they carried

insufficient temporal context. In the end, our network went

through about 10 passes over the full training set. The matrix

W were randomly initialized within [−0.08, 0.08]. As AU

data is heavily skewed, randomly sampling the sequences

could cause LSTMs biased to negative predictions. As a

result, we omitted training sequences with less than 1.5 active

AUs per frame. We refer interested readers to the author’s

Ph.D. thesis for details about more sophisticated strategies on

multi-label sampling. All experiments were performed using

one NVidia Tesla K40c GPU.

C. Evaluation of learned representation

To answer the question whether individual differences

can be reduced by feature learning, we first evaluated the

fc7 features with standard features in AU detection, includ-

ing shape (landmark locations), Gabor, and HOG features.

Because such features for AU detection are unsupervised,

for fairness, fc7 features for BP4D were extracted using

CNNs trained on GFT, and vise versa. Fig. 3 shows the t-

SNE embeddings of frames represented by HOG, VGG face

descriptor [24] and fc7 features colored in terms of AU12 and

subject identities. As can be seen in first and second columns,

HOG and VGG face descriptors have strong distributional

biases toward subject identity. On the other hand, as shown

in the third column, although the network is learned on

the other dataset, fc7 features show relative invariance to

individual differences. More importantly, as shown in the

plot of AU12, fc7 features maintain the grouping effect on

samples of the same AU, implying its ability of capturing

necessary information for classification.

As a quantitative evaluation, we treated the frames of the

same subject as a distribution, and computed the distance

between two subjects using Jensen-Shannon (JS) divergence

[20]. Explicitly, we first computed a mean vector μs for

each subject s in the feature space, and then squeezed μs

using a logistic function σ(a) = 1

1+e−a/m (m is median of

μs as the median heuristic) and unity normalization, so that

each mean vector can be interpreted as a discrete probability

distribution, i.e., μs≥ 0, ‖μs‖1=1, ∀s. Given two subjects

p and q, we computed their JS divergence as:

D(μp,μq) =
1

2
DKL(μp||m) +

1

2
DKL(μq||m), (5)

where m = 1
2 (μp + μq) and DKL(μp,m) is the discrete

KL divergence of μp from m. JS divergence is symmetric

and smooth, and has been shown effective in measuring the

dissimilarity between two distributions (e.g., [34]). Higher

value of D(μp,μq) tells larger mismatch given distributions

for two subjects. Fig. 4 shows the statistics of distributional

divergence over all subjects in one dataset, which was
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Dataset Shape Gabor HOG fc7

BP4D 5.38±.40 4.63±.16 3.87±.12 3.58±.09

GFT 5.43±.39 4.74±.23 3.41±.25 0.89±.13

Fig. 4. Subject-invariance on the BP4D and GFT datasets in terms of a
computed JS-divergence d normalized by log(d)×1e6. (details in text)

computed by summing over D(μp,μq), ∀q 
= p. As can

be seen, HOG consistently reached a lower divergence than

Gabor, providing an evidence that local descriptor (HOG)

is more robust to appearance changes compared to holistic

ones (Gabor). This also serves as a possible explanation why

HOG consistently outperformed Gabor (e.g., [43]). Overall,

fc7 yields much lower divergence compared to alternative

engineered features, implying reduced individual differences.

D. Evaluation of detection performance

This section evaluates the performance of the proposed

network on BP4D and GFT datasets. Below we summarize

alternative methods, and then provide discussion.

Alternative methods: For evaluation, we compared a

baseline HOG method, a standard multi-label CNN, and

feature-based state-of-the-arts. The baseline HOG was used

to train a linear SVM for each AU. This baseline has

been shown to outperform other appearance descriptors

(i.e., Gabor/Daisy) [43]. Because HOG is unsupervised, for

fairness, we evaluated a cross-dataset protocol that trained

AlexNet on the other dataset, termed as ANetT. fc7 features

extracted by ANetT were then used in comparison with HOG

descriptors. Linear SVMs served as the base classifier, which

implicitly tells how separable each feature was, i.e., higher

classification rate suggests an easier linear separation, and

validates that a good representation could reduce the burden

of designing a sophisticated classifier. We evaluated ANetT

on a 3-fold protocol, while we expect similar results could

be obtained using 10-fold.

Another alternative is our modified AlexNet (ANet), as

mentioned in Sec. III-A, with slightly different architecture

and loss function (multi-label cross-entropy instead of multi-

class softmax). ANet stood for a standard multi-label CNN,

a representative of feature learning methods. On the other

hand, CPM [39] and JPML [41] are feature-based state-

of-the-art methods that were reported on the two datasets.

Both CPM and JPML used HOG features [39], [41]. They

differ in attacking the AU detection problem from different

perspectives. CPM is one candidate method of personaliza-

tion, which aims at identifying reliable training samples for

adapting a classifier that best separates samples of a test

subject. On the other hand, JPML models AU correlations,

and meanwhile considers patch learning to select important

facial patches for specific AUs. We ran all experiments

following protocols in Sec. IV-B.

Results and discussion: Tables I and II show F1 metrics

reported on 12 AUs; “Avg” for the mean score of all AUs.

According to the results, we discuss our findings in hope to

answer three fundamental questions:

1) Could we learn a representation that better generalizes

across subjects or datasets for AU detection? On both

datasets, compared to HOG, ANetT trained with a cross-

dataset protocol on average yielded higher scores with a few

exceptions. In addition, for both 3-fold and 10-fold protocols

where ANet was trained on exclusive subjects, ANet consis-

tently outperformed HOG over all AUs. These observations

provide an encouraging evidence that the learned repre-

sentation was transferable even when being tested across

subjects and datasets, which also coincides with the findings

in the image and video classification community [18], [29],

[30]. On the other hand, as can be seen, ANet trained

within datasets leads to higher scores than ANetT trained

across datasets. This is because of the dataset biases (e.g.,

recording environment, subject background, etc.) that could

cause distributional shifts in the feature space. In addition,

due to the complexity of deep models, the performance

gain of ANet trained on more data (10-fold) became larger

than ANet trained on 3-fold, showing the generalizability of

deep models increases with the growing number of training

samples. Surprisingly, compared to HOG trained on 10-fold,

ANet trained on 3-fold showed comparable scores, even with

∼30% fewer data than what HOG was used. All suggests

that features less sensitive to the identity of subjects could

improve AU detection performance.

2) Could the learned temporal dependencies improve

performance, and how? The learned temporal dependen-

cies was aggregated into the hybrid network denoted as

“ours”. On both 3-fold and 10-fold protocols, our hybrid

network consistently outperformed ANet in all metrics. This

improvement can be better told by comparing their F1-

event scores. The proposed network used CNNs to extract

spatial representations, stacked LSTMs to model temporal

dependencies, and then performs a spatiotemporal fusion.

From this view, predictions with fc7 features can be treated as

a spacial case of ANet—a linear hyperplane with a portion of

intermediate features. In general, adding temporal informa-

tion helped predict AUs except for a few in GFT. A possible

explanation is that in GFT, the head movement was more

frequent and dramatic, and thus makes temporal modeling

of AUs more difficult than moderate head movements in

BP4D. In addition, adding temporal prediction into the fusion

network attained an additional performance boost, leading

to the highest F1 score on both datasets with either the 3-

fold or the 10-fold protocols. This shows that the spatial

and temporal cues are complementary, and thus is crucial to

incorporate all of them into an AU detection system.

3) Would jointly considering all issues in one framework

improve AU detection? This question aims to examine if the

hybrid network would improve the performance of the meth-

ods that consider the aforementioned issues independently.

To answer this question, we implemented CPM [39] as a

personalization method that deals with representation issues,

and JPML [41] as a multi-label learning method that deals

with AU relations. Our modified ANet served as a feature

learning method. All parameters settings were determined

following the descriptions in the original papers. To draw a

valid discussion, we fixed the exact subjects for all methods.

Observing 3-fold on both datasets, the results are mixed. In
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TABLE I

F1-FRAME ON GFT DATASET [4]

3-fold protocol cross 10-fold protocol

AU HOG CPM JPML ANet Ours ANetT HOG CPM JPML ANet Ours

1 12.1 30.7 17.5 31.2 29.9 9.9 30.3 29.9 28.5 57.5 63.0

2 13.7 30.5 20.9 29.2 25.7 10.8 25.6 25.7 25.5 61.4 74.6

4 5.5 – 3.2 71.9 68.9 45.4 – – – 75.9 68.5
6 30.6 61.3 70.5 64.5 67.3 46.2 66.2 67.3 73.1 61.6 66.3

7 26.4 70.3 65.5 67.1 72.5 51.5 70.9 72.5 70.2 80.1 74.5
10 38.4 65.9 67.9 42.6 67.0 23.5 65.5 67.0 67.1 54.5 70.3

12 35.2 74.0 74.2 73.1 75.1 55.2 74.2 75.1 78.3 79.8 78.2
14 55.8 81.1 52.4 69.1 80.7 62.8 79.6 80.7 61.4 84.2 80.4
15 9.5 25.5 20.3 27.9 43.5 14.2 34.1 43.5 28.0 40.3 50.5

17 31.3 44.1 48.3 50.4 49.1 34.2 49.2 49.1 42.4 61.6 61.9

23 19.5 19.9 31.8 34.8 35.0 21.8 28.3 35.0 29.6 47.0 58.2

24 12.9 27.2 28.5 39.0 31.9 18.9 31.9 31.6 28.0 56.3 50.8

Avg 24.2 48.2 41.8 50.0 53.9 32.9 50.5 52.4 48.4 63.4 66.4

GFT, ANet and JPML achieved 3 and 2 highest F1 scores; in

BP4D, CPM and ANet reached 5 and 2 highest F1 scores. An

explanation is because, although CNNs possess high degree

of expressive power, the number training samples in 3-fold

(33% left out for testing) were insufficient and might resulted

in overfitting. In the 10-fold experiment, when training data

was abundant, the improvements became clearer, as the

parameters of the complex model can better fit our task.

Overall, in most cases, our hybrid network outperformed

alternative approaches by a significant margin, showing the

benefits for considering all issues in one framework.

E. Visualization of learned AU models

To better understand and interpret the proposed network,

we implement a gradient ascent approach [28], [38] to

visualize each AU model. More formally, we solve for such

input image I� by solving the optimization problem:

I� = argmax
I

A�(I)− Ω(I), (6)

where A�(I) is an activation function for the �-th unit of

the fc8 layer given an image I, and Ω(·) is a regularization

function that penalizes I to enforce a natural image prior.

In particular, we implemented Ω(·) as a sequential operation

of L2 decay, clipping pixels with small norm, and Gaussian

blur [38]. The optimization was done by iteratively updating

a randomized and zero-centered image with the backprop

gradient of A�(I). In other words, each pixel of S was

renewed gradually to increase the activation of the �-th AU.

This process continued until 10,000 iterations.

Fig. 5 shows our visualizations of each AU model learned

by the CNN architecture described in Sec. III-A. As can

be seen, most models match the attributes described in

FACS [10]. For instance, model AU12 (lip corner puller)

exhibits a strong “�” shape to the mouth, overlapped with

some vertical “stripes”, implying the appearance of teeth is

commonly seen in AU12. Model AU14 (dimpler) shows the

dimple-like wrinkle beyond lip corners, which, compared to

AU12, gives the lip corners a downward cast. Model AU15

(lip corner depressor) shows a clear “�” shape to the mouth,

producing an angled-down shape at the corner. For upper

face AUs, model AU6 (cheek raiser) captures deep texture

of raised-up cheeks, narrowed eyes, as well as a slight “�”

TABLE II

F1-FRAME METRICS ON BP4D DATASET [40]

3-fold protocol cross 10-fold protocol

AU HOG CPM JPML ANet Ours ANetT HOG CPM JPML ANet Ours

1 21.1 43.4 32.6 40.3 31.4 32.7 46.0 46.6 33.9 54.7 70.3

2 20.8 40.7 25.6 39.0 31.1 26.0 38.5 38.7 36.2 56.9 65.2

4 29.7 43.3 37.4 41.7 71.4 29.0 48.5 46.5 42.2 83.4 83.1
6 42.4 59.2 42.3 62.8 63.3 61.9 67.0 68.4 62.9 94.3 94.7

7 42.5 61.3 50.5 54.2 77.1 59.4 72.2 73.8 69.9 93.0 93.2

10 50.3 62.1 72.2 75.1 45.0 67.4 72.7 74.1 72.5 98.9 99.0

12 52.5 68.5 74.1 78.1 82.6 76.2 83.6 84.6 72.0 94.4 96.5

14 35.2 52.5 65.7 44.7 72.9 47.1 59.9 62.2 62.6 82.9 86.8

15 21.5 36.7 38.1 32.9 34.0 21.7 41.1 44.3 38.2 55.4 63.3

17 30.7 54.3 40.0 47.3 53.9 47.1 55.6 57.5 46.5 81.1 82.7

23 20.3 39.5 30.4 27.3 38.6 21.6 40.8 41.7 38.3 63.7 73.5

24 23.0 37.8 42.3 40.1 37.0 31.3 42.1 39.7 41.5 74.3 81.6

Avg 32.5 50.0 45.9 48.6 53.2 43.4 55.7 56.5 51.4 77.8 82.5

shape to the mouth, suggesting its frequent co-occurrence

with AU12 in spontaneous smiles. Models AU1 and AU2

(inner/outer brow raiser) both capture the arched shapes to

the eyebrows, horizontal wrinkles above eyebrows, as well

as the widen eye cover that are stretched upwards. Model

AU4 (brow lowerer) captures the vertical wrinkles between

the eyebrows and narrowed eye cover that folds downwards.

Our visualizations suggest that the CNN was able to

identify these important spatial cues to discriminate AUs,

even though we did not ask the network to specifically learn

these AU attributes. Furthermore, the global structure of a

face was actually preserved throughout the network, despite

that convolutional layers were designed for local abstraction

(e.g., corners and edges as shown in Fig. 2(d)). Lastly, the

widespread agreements between the synthetic images and

FACS [10] confirm that the learned representation is able to

describe and reveal co-occurring attributes across multiple

AUs. We believe such AU co-occurrence is captured due to

the multi-label structure in the proposed network. This was

not shown possible in standard hand-crafted features in AU

detection (e.g., shape [15], [22], HOG [39], [41], LBP [17],

[33], or Gabor [33]). To the best of our knowledge, this is

the first time to visualize how machines see facial AUs.

V. CONCLUSION AND FUTURE WORK

We have presented a hybrid network that jointly learns 3

factors for multi-label AU detection: Spatial representation,

temporal modeling, and AU correlation. To the best of our

knowledge, this is the first study that shows a possibility of

laerning the three seemingly unrelated aspects within one

framework. The hybrid network is motivated by existing

progress on deep models, and takes advantage of spatial

CNNs, temporal LSTMs, and their fusions to achieve multi-

label AU detection. Experiments on two large spontaneous

AU datasets demonstrate the performance over a standard

CNN and feature-based state-of-the-art methods. In addition,

our visualization of learned AU models showed, for the first

time, how machines see each facial AU. Future work include

deeper analysis of the hybrid network (especially the LSTM

portion), incorporation of bi-directional LSTMs, training an

entire network in one-go, and compare the proposed model

between single-label and multi-label settings.
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Fig. 5. Synthetically generated images to maximally activate individual AU neurons in the fc8 layer of CNN, trained on GFT [4], showing what each
AU model “wants to see”. The learned models show high agreement on attributes described in FACS [10]. (best view electronically)
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