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Abstract— Most action unit (AU) detection methods use
one-versus-all classifiers without considering dependences
between features or AUs. In this paper, we introduce a joint
patch and multi-label learning (JPML) framework that models
the structured joint dependence behind features, AUs, and
their interplay. In particular, JPML leverages group sparsity
to identify important facial patches, and learns a multi-label
classifier constrained by the likelihood of co-occurring AUs.
To describe such likelihood, we derive two AU relations, positive
correlation and negative competition, by statistically analyzing
more than 350,000 video frames annotated with multiple AUs.
To the best of our knowledge, this is the first work that
jointly addresses patch learning and multi-label learning for
AU detection. In addition, we show that JPML can be extended
to recognize holistic expressions by learning common and specific
patches, which afford a more compact representation than the
standard expression recognition methods. We evaluate JPML on
three benchmark datasets CK+, BP4D, and GFT, using within-
and cross-dataset scenarios. In four of five experiments, JPML
achieved the highest averaged F1 scores in comparison with
baseline and alternative methods that use either patch learning
or multi-label learning alone.

Index Terms— Patch learning, multi-label learning, group
sparsity, support vector machine, ADMM, facial expression
recognition, facial action unit detection, correlation.

I. INTRODUCTION

THE Facial Action Coding System (FACS) [11] is a
comprehensive system for describing facial muscle move-

ments. Anatomically-based actions, referred to as Action
Units (AUs), alone and in thousands of combinations can
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Fig. 1. An illustration of the proposed Joint Patch and Multi-label
Learning (JPML) framework: (a) Derivation of multiple AU labels through a
learned group-sparsity-induced classification matrix and a given feature vector
(e.g., SIFT), (b) Likely and rarely co-occurring AUs, (c) Patch indices, and
(d) Automatically selected patches. The example is for AU12 (lip corner
puller). Details, e.g., features, derivations, and the number of AUs, follow.

account for nearly all possible facial expressions. However,
this descriptive power is not without cost. Manual FACS
coding is labor intensive. Training a classifier can require
a hundred hours or more to reach acceptable competence.
Once a FACS coder achieves this milestone, annotation (also
referred to as coding) can require an hour or more for
each 30 to 60 seconds of video, and inter-observer reliability
must be closely monitored to maintain quality. To make
possible more efficient use of FACS, computer vision strives
for automatic AU coding. While significant progress has been
made toward this goal [1], [6], [10], [26], at least two critical
problems remain. These are patch learning and multi-label
learning. Patch learning (PL) addresses how to effectively
exploit local dependencies between features; multi-label learn-
ing (ML) seeks to exploit strong correlations between AUs.

Most current AU detection approaches extract features
across the entire face and concatenate them for learning.
However, these approaches ignore the fact that faces are struc-
tured and thus neighboring features are dependent. As shown
in Fig. 1(d), features extracted within a local region are
correlated due to a shared neighborhood. In this paper, we
define such regions as “patches”. By jointly modeling fea-
tures extracted within each patch, it is possible to identify
informative regions as defined in FACS [11]. For instance,
Zhong et al. [43] effectively applied patch learning to detect
prototypic expressions (e.g., happiness or sadness). Patch
learning helps reduce feature dimensionality and promotes
interpretability for the demanding AU detection problem.
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Similarly, just as features within patches have dependencies,
AUs are dependent as well. For instance, AU 1 (inner-brow
raise) increases the likelihood of AU 2 (outer-brow raise)
and decreases the likelihood of AU 6 (cheek raiser). Multi-
label learning builds upon this knowledge. Using relations
between AUs improves learning by implicitly increasing the
sample size for correlated AUs. Recent efforts have explored
AU relationships using Bayesian networks (BN) [32], [33]
and Restricted Boltzmann Machine (RBM) [34]. Other works
developed generic domain knowledge to learn AU models
without training data [19].

Instead of modeling PL or ML individually, in this paper,
we propose a novel framework, Joint Patch and Multi-label
Learning (JPML), to address both problems with one stone.
JPML aims to model the structured joint dependencies behind
features, AUs, and their interplay. Specifically, JPML leverages
the structure in the classification matrix and the multi-label
nature in AU annotations, and naturally blends both tasks into
one. To capture the dependencies between AUs, we explore
two types of AU relations, termed positive correlation and
negative competition, by statistically analyzing more than
350,000 annotated video frames from three datasets. The
datasets involve two- and three-person social contexts and a
variety of emotion inductions. Incorporating such AU rela-
tions, JPML is able to simultaneously select a discriminative
subset of patches and learn a multi-AU classifier.

Fig. 1 illustrates the main idea of the proposed JPML:
(a) shows that JPML learns a classification matrix for
jointly predicting multiple AU labels and inducing group-
sparsity among patches. The joint process of JPML are
mutually-beneficial due to the complementary characteristics
in the classification matrix. (b) shows likely and unlikely
co-occurring AUs. (c) shows patch indices. (d) illustrates the
patches selected by JPML, showing JPML’s ability to find
a discriminative subset of patches to identify AU12 (oblique
lip corner puller). Comprehensive experiments on CK+ [22],
GFT [27], and BP4D [40], validate the effectiveness of JPML
in comparison to baseline and alternative approaches that use
only patch learning or multi-label learning. To summarize, this
paper presents three contributions:

• A novel Joint Patch and Multi-label Learning (JPML)
framework that simultaneously leverages dependencies
between features, AUs, and their interplay. To the best of
our knowledge, this is the first study that jointly addresses
patch and multi-label learning for AU detection.

• A derivation of AU relations by statistically analyzing
over 350,000 annotated video frames coded with mul-
tiple AUs. We categorize the AU relations into positive
correlation and negative competition, which coincide with
findings in existing literature, including FACS.

• An extension of JPML that disentangles common and
specific patches to recognize holistic facial expressions.
In our experiments, this extension reveals sparse patches
shared or specific to particular expressions, and achieves
comparable accuracy with alternative approaches.

A preliminary version of this work appeared as [42].
In this paper, we provide technical details in solving the
multi-label learning algorithm, present extended results on

holistic expression recognition, and offer an in-depth analysis
of what our models learned about important patches for each
AU. The rest of this paper is organized as follows. Section II
discusses related work. Section III presents the proposed JPML
framework. Section IV introduces an extension of JPML that
decomposes patches into common and specific ones for dif-
ferent expressions. Section V evaluates JPML against existing
patch-learning and multi-label learning methods. Section VI
concludes the paper with remarks and future work.

II. RELATED WORK

Automatic facial AU detection has been a vital research
domain to objectively describe facial actions related to emo-
tion, intention, and related states. See [1], [6], [10], and [26]
for comprehensive reviews. Our work closely follows recent
efforts in patch learning and multi-label learning. Below, we
review each in turn.

A. Patch Learning

AU detection methods often perform feature learning to
select a representative subset of raw features. Standard feature
learning approaches include AdaBoost [20], GentleBoost [14],
and a linear SVM [22], which are often employed on fea-
ture descriptors such as DAISY/SIFT [45], LBP [16], or
concatenated image features [31]. Because methods based
on feature learning typically perform pooling from across
the face, much valuable information could be lost. Based
on FACS [11], AUs relate to different regions of the face.
Different facial regions can provide unique information for
discriminating facial AUs and holistic expressions [28], [29].
Cohn and Zlochower [7] found that facial regions differentially
contribute to holistic expressions. Zafeiriou and Pitas [36]
applied elastic graph matching to produce an expression-
specific graph that identified the most discriminant facial
landmarks for specific expressions. Specific facial regions are
critical for detecting AUs. For example, if one seeks to detect
AUs 1 and 2 (eye brow raiser), the regions of eyes and brows
are likely to be more informative than the jaw.

Using domain knowledge, feature selection can be sampled
within subregions, or patches, of the face. Following this
intuition, patch learning was proposed to model the region
specificity to improve the performance of AU detection.
Zhong et al.. [43] divided a facial image into uniform patches
and then categorized these patches into common ones and
specific ones for holistic expression recognition. Following this
idea, Liu et al. [21] proposed to select common and specific
patches corresponding to an expression pair (e.g., happiness-
sadness). However, these patches were modeled implicitly and
did not directly capture regional importance for facial AUs.
Recently, Taheri et al. [30] used two-layer group sparse coding
to encode AUs on predefined regions, and recovered facial
expressions using sparsity in AU composition rules. Similarly,
using predefined grids on faces, Kotsia and Pitas [17]
designed an architecture to track grids for each AU and then
adopted AU composition rules to predict holistic expressions.

These patch learning approaches have been proven effective
when applied to posed expressions. However, spontaneous
facial behavior often involve out-of-plane rotation that may
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introduce significant errors. In addition, it is unclear how
AU dependencies can be taken into account.

B. Multi-Label Learning

Existing research suggests the existence of strong AU cor-
relations [19], [34]. For instance, AUs 6 and 12 are known
to co-occur in expressions of enjoyment, embarrassment, and
pain but not in expressions of distress or sadness. Knowing
such AU correlations could assist in predicting AUs given one
another. Tong et al. [33] proposed to model AU correlations
with Bayesian Network (BN) and initialized the network
structure with inferred co-occurring relationships among AUs
from FACS [11]. Based on the observed intra-, inter-, and rage-
relationships between AUs, Tong and Ji et al. [32] constructed
a BN with the corresponding relation constraints to help
improve predictions in the limited training data scenario. These
two works focus on the semantic local correlations between
AUs. To this end, Wang et al. [34] used Restricted Boltzmann
Machine (RBM) to capture the global correlations among
AUs. Other approaches use generic domain knowledge. For
example, AU correlations can be modeled as a directed graph
without training data [19]. In addition, a sparse multi-task
model can be employed to learn several AUs together [41].
Nevertheless, it is unclear how these methods can best identify
a discriminative subset of patches to improve AU detection.
This study proposes a Joint Patch and Multi-label Learn-
ing (JPML) framework that simultaneously addresses patch
learning and multi-label learning for AU detection.

III. JOINT PATCH AND MULTI-LABEL LEARNING (JPML)

A. Formulation

Let D = {(xi , yi )}N
i=1 be the training set with N instances

and L AUs, where xi ∈ R
D is a feature vector from a facial

image, and yi ∈ {+1,−1}L is an L × 1 label vector which
indicates a presence of the �-th AU if the �-th element yi� =
+1, and an absence of the �-th AU if yi� = −1 (see notation).1

For brevity, we denote X = [x1, . . . , xN ] ∈ R
D×N as a data

matrix, and I� = {i |yi� = +1} as an index set of instances that
contain the �-th AU. Our goal is to learn L linear classifiers
in the matrix form W = [w1, . . . , wL ] ∈ R

D×L that enforces
group-wise sparse feature selection (corresponding to the rows
of W) and AU relations (corresponding to the columns of W).
We formulate JPML as an unconstrained optimization:

min
W∈RD×L

L(W,D) + α�(W) + �(W, X), (1)

where L(W,D) = ∑L
�=1

∑
i∈I�

ln(1 + exp(−yi�w�
� xi )) is

the logistic loss, �(W) is the patch regularizer that enforces
sparse rows of W as groups, and �(W, X) is a relational
regularizer that constrains predictions on X with AU relations.
Tuning parameters are α for �(·), and (β1, β2) that are
included in �(·, ·). Problem (1) involves two tasks: identify a

1Bold capital letters denote a matrix X; bold lower-case letters denote a
column vector x. xi the i-th column of the matrix X. All non-bold letters
represent scalars. Xi j denotes the scalar in the (i, j)-th entry of the matrix X.
x j denotes the scalar in the j th element of x. 1m ∈ R

m is a vector of ones.
0m×n ∈ R

m×n are matrices of zeros. I (x) is an indicator function that
returns 1 if the statement x is true, and 0 otherwise.

discriminative subset of patches for each AU (patch learning),
and incorporate AU relations into model learning (multi-label
learning). Below we detail each task in turn.

B. Patch Learning

The first task of JPML addresses patch learning. According
to FACS [11], AUs are muscle movements corresponding
to particular facial regions. Unlike standard feature learning
methods that treat features separately [20], [23], patch learning
imposes local dependencies within facial patches. To this end,
most existing works select patches on a uniformly distributed
grid [21], [30], [43]; this paper exploits landmark patches
that are centered at facial landmarks (as depicted in Fig. 1(c)).
These landmark patches better capture the appearance changes
at different facial regions (e.g., mouth corner) because of the
non-rigidity of faces. In particular, we describe each patch
using a 128-D SIFT descriptor. Each facial image is then
represented as a 6272-D feature vector by concatenating the
SIFT descriptors over 49 facial landmarks.

To address the regional appearance changes on AUs, we
define a group-wise sparsity on the classification matrix W.
Group sparsity learning aims to split variables into groups and
then to select groups in sparsity. The effectiveness of group
sparsity has been shown in recovering joint sparsity across
input dimensions, e.g., [18], [39]. Given the structural nature
of our problem, within each column of W, we split every
128 values into non-overlapping groups, where each group
corresponds to the SIFT features extracted from a particular
patch. This grouping encourages a sparse selection of patches
by jointly setting a group of rows in W to zero. In particular,
Problem (1) reduces to:

min
W∈RD×L

L(W,D) + α�(W), (2)

where �(W) = ∑L
�=1

∑49
p=1 ‖wp

� ‖2 is the patch regularizer,
and wp

� is the p-th group for the �-th AU, i.e., rows of w�

grouped by the patch p. In other words, the regularizer �(W)
is an L21-norm that induces sparsity in terms of “groups”.
By definition, L21 involves both L2-norm and L1-norm:
L2-norm computes groups of weights that are associated with
features centered at a landmark; there are totally 49 landmarks
and thus 49 groups. Meanwhile, L1-norm performs a sparse
selection among 49 groups. As illustrated in Figs. 2 and 8, the
selected patches are tentatively sparse using this regularizer.

1) Patch Importance: To validate the ability of maintaining
the specificity of patches (i.e., how meaningful the selected
patches correspond to a particular AU), we compare standard
feature learning2 (treat each feature independently) with our
patch learning (treat features as groups). We define the impor-
tance of the p-th patch for the �-th AU as its contribution to the
classification task, i.e., ‖wp

� ‖2. As shown in Fig. 2, compared
to feature learning, patch learning offers a better interpretation
of important patches in 3 AUs. For instance, patches around
inner eyebrow contain higher importance for AU 1; for AU 24,
patches around the mouth (especially upper lips) are shown
more important. Moreover, compared to previous work that

2�1-regularized linear SVM [12] was used as feature learning.
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Fig. 2. Patch importance between standard feature learning and our patch
learning for AUs 1, 12 and 24 on CK+ dataset. Weights on each patch are
computed as the norm of their classification vectors normalized to [0,1].

Fig. 3. F1-Norm with respect to different #patches for AU 12
on CK+ dataset. Three marked faces indicate the 18, 26 and 42 selected
patches, which are depicted as light yellow circles.

manually defines a fixed region for AU 12 (e.g., [30], [35]),
our patch learning for AU 12 automatically emphasizes upper
lips (not lower lips), the patches around lower nose, and minor
importance on the lower eyelid (corresponding to AU 6). It can
be observed that patch learning brings better specificity of
relevant facial patches.

2) The Number of Patches Versus Performance: A natural
question to ask is how the number of patches influences
the performance of AU detection. Intuitively, introducing
more patches should improve detection performance because
more information is provided. To answer this question,
we performed an experiment on AU 12 in CK+ dataset.
Patches were selected in a descending order with respect to
the patch importance. As shown in Fig. 3, the performance
increases quickly until it hits the best performance with
18 patches, which associate with the zygomatic major
in AU 12 (upper lips and lower nose). When #patches
becomes 26, patches on lower eyelid (associated with AU 6)
are included, showing that patches associated with AU 6
are related to AU 12. However, the performance drops
slightly because not all patches carry useful information
for a particular AU, coinciding with the findings [43].
Introducing more patches potentially include more noises that
fluctuate the performance. Observing similar performance
between #patches=18 and #patches=42, one can justify the
importance of patch specificity, i.e., only a subset of patches
are discriminative for AU detection.

Fig. 4. The AU relation matrix studied on more than 350,000 valid frames
with AU labels. Red solid and dashed yellow rectangles, indicate the positive
correlations and negative competitions studied in this work, respectively.

C. Multi-Label Learning

The next task of JPML is to exploit label relations
for AU detection. Learning with related labels effectively
increases the sample size for each class, and improves
the prediction performance (e.g., [3], [38]). Despite of the
AU relations derived from prior knowledge [19], [34], this
section explores statistically the AU co-occurrence among
more than 350,000 annotated video frames. Below we describe
how we discover these relations, and how they can be incor-
porated into JPML.

1) Discover AU Relations: We seek AU relations by sta-
tistically analyzing three datasets, CK+ [22], GFT [27] and
BP4D [40], which in total contain 214 subjects and more
than 350,000 valid FACS-coded frames. The top frequently
occurring AUs are used throughout this paper. Here, our goal
is to discover likely and rarely co-occurring AUs.

Fig. 4 shows the relation matrix studied on the three datasets.
The (i, j)-th entry of the upper right matrix was computed as
the coefficient correlation between the i -th and the j -th AU
using ground truth frame-level labels; an entry of the lower left
matrix was computed on the labels containing at least either
the i -th or the j -th AU. One could interpret the upper matrix
in Fig. 4 as a mutual relation of concurring AU pairs, and the
lower matrix as an exclusive relation that one AU competes
against another. After investigating this matrix with the FACS
[11] and related studies [19], [34], we derive two types of
AU relations, positive correlation and negative competition,
as summarized in Table I.

To discover these relations, we derive explicit rules
as follows. AUs with over moderate positive correlations,
i.e., correlation coefficient ≥ 0.40, are assigned as posi-
tive correlations, e.g., AUs (6, 12) co-occur frequently to
describe a Duchenne smile. AUs with large negative cor-
relations, i.e., the negative correlation coefficient ≤ −0.60,
are selected as negative competitions, implying these AUs
compete against each other and thus avoid occurring at the
same time, e.g., AUs (12, 15) have negative influences on each



ZHAO et al.: JPML FOR FACIAL AU AND HOLISTIC EXPRESSION RECOGNITION 3935

TABLE I

AU RELATIONS DISCOVERED AND USED IN THIS STUDY

other (similar findings in [19]). Note that, for the lower matrix,
we exclude the consideration of relations between upper face
and lower face AUs, because their facial muscles function
separately, and thus do not literally compete against each
other. In addition, one can observe that the absolute values of
lower matrix are higher than the upper ones, providing another
evidence that most AU combinations rarely co-occur [30].

2) Incorporating AU Relations With JPML: Denote the
set of AU pairs with positive correlations and with negative
competitions as P and N , respectively. For instance, AUs (1,2)
and AUs (6,12) are in P ; AUs (15,23), AUs (15,24), and
AUs (23,24) are in N . To incorporate the AU relations
discovered above, we introduce the relational regularizer:

�(W, X) = β1 PC(W, X,P) + β2 NC(W, X,N ), (3)

where β1 and β2 are tradeoff coefficients. PC(W, X,P)
captures the AU relations of positive correlations:

PC(W, X,P) = 1

2

∑

(i, j )∈P
γi j ‖w�

i X − w�
j X‖2

2, (4)

where γi j is a pre-defined similarity score that determines how
similar two predictions w�

i X and w�
j X are. The larger γi j is,

the more similar predictions are for the i -th and the j -th AUs
in P (γi j = 2000 in our experiments). The intuition behind this
regularizer is that AUs within the same positive group would
share similar predictions, and thus minimizes (4). On the other
hand, the regularizer of negative competition NC(W, X,N )
is defined in analogy to exclusive lasso [44]:

NC(W, X,N ) =
N∑

i=1

|N |∑

n=1

⎛

⎝
∑

j∈Nn

∣
∣
∣w�

j xi

∣
∣
∣

⎞

⎠

2

, (5)

where Nn indicates the n-th AU pair in N , and |N | = 14
(as shown in Table I). For example, N1 is the AU pair (1,6)
with negative competition. Because the �1 norm in Eq. (5)
tends to achieve a sparse solution, if one classifier predicts
AU1 in the group N1, the AU6 classifier tends to generate
small prediction values so that the value of the regularizer is
minimized. In this way, “competitions” are introduced among
the predictions within the same negative group. As a result,
we solve for the multi-label learning task of JPML:

min
W

L(W,D) + �(W, X). (6)

We detail our algorithm to solve JPML in the next section.

Algorithm 1 Patch Learning (PL)

D. Algorithm

Because the patch regularizer �(W) and the relational
regularizer �(W, X) constrain on rows and columns of W,
respectively, Problem (1) has no analytical solution. Instead,
we rewrite (1) by introducing auxiliary variables W1, W2, and
then jointly optimize W1 and W2 using ADMM [2]:

min
W1,W2

L(W1,D) + α�(W1) + �(W2, X)

s.t. W1 = W2. (7)

Introducing a Lagrangian multiplier U ∈ R
D×L and a

penalty term ρ, the augmented Lagrangian can be written as:

Lρ(W1, W2, U) = L(W1,D) + α�(W1) + �(W2, X)

+ 〈U, W1 − W2〉 + ρ

2
‖W1 − W2‖2

F ,

(8)

which can be then solved with ADMM following the updates:

W(k+1)
1 = min

W1
Lρ(W1, W(k)

2 , U(k)), (9)

W(k+1)
2 = min

W2
Lρ(W(k+1)

1 , W2, U(k)), (10)

U(k+1) = U(k) + ρ(W(k+1)
1 − W(k+1)

2 ). (11)

Solving (9) involves the patch regularizer �(W1) and the
augmented terms in Lp . Because solving for W1 with L2,1
norm is a non-smooth problem, we decompose L2,1 norm
into 49 sub-problems, which are then solved using the accel-
erated gradient method [4]. Algo. 1 summarizes the detailed
procedure. The convergence condition in the algorithm is
‖w(t+1) − w(t)‖2 ≤ δ (δ = 10−5 in our case).

Fig. 5 illustrates the convergence process of PL on
AU 12. While the number of iteration increases, PL con-
verges to a subset of patches that preserve better specificity.
On iteration #1, many patches irrelevant to AU 12 are selected.
From iteration #10 to #30, patches associated with AU 12 are
strengthen but still involve unrelated regions such as eyes. PL
converges at it#60, revealing the patches around lower nostril
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Fig. 5. Illustration of convergence curve on learning active patches on AU 12 with algorithm PL. While the iterations proceed, PL identifies the regions for
AU 12 (lip corner puller) with better specificity.

wing and upper mouth, the regions that zygomaticus major
muscle triggers for AU 12.

Solving (10) involves the relational regularizer �(W2, X)
and the augmented terms in Lp . Algo. 2 summarizes the
procedure. For �(·, ·), the positive correlation PC(W2, X,P)
is smooth in W2, but the negative competition NC(W2, X,N )
is not making Problem (10) non-differentiable. Instead of
solving (10) directly, we adopt Nesterov’s approximation [25]
to smooth the objective. Given a training sample xi and
its negative relation Ni , we denote WNi as a D × |Ni |
submatrix of W where each column contains w j and j ∈ Ni .

Let ‖W�
Ni

xi‖1 = ∑
j∈Ni

∣
∣
∣w�

j xi

∣
∣
∣, we can write its dual

norm as ‖w�
j xi‖1 = max‖z‖∞≤1〈w�

j xi , z〉, and smooth
NC(W2, X,N ) following the Nesterov’s approximation [25].
That is, the ‖w�

j xi‖1 can be approximated by the following
smooth function:

qμ(w j , xi ) = max‖z‖∞≤1
〈w�

j xi , z〉 − μ

2
‖z‖2

2, (12)

where μ is a parameter to control the approximation accuracy.
For a fixed w, we obtain z as:

z = min

{

1, max
{

− 1,
w�

j xi

μ

}}

. (13)

Based on these preliminaries, we solve the non-smooth objec-
tive of problem (10) as the smooth approximation:

L(W1,D) + α�(W1) + β1 PC(W2, X,P)

+β2 NCμ(W2, X,N )+〈U, W1−W2〉+ ρ

2
‖W1−W2‖2

F , (14)

where

NCμ(W2, X,N ) =
N∑

i=1

|N |∑

n=1

⎛

⎝
∑

j∈Nn

qμ(w j , xi )

⎞

⎠

2

. (15)

JPML is optimized by iterating patch learning (Algo. 1)
and multi-label learning (Algo. 2). Because the ADMM form
in (8) is bi-convex, i.e., convex in W1 when W2 is fixed and
vise versa, it is guaranteed to converge to a critical point [13].
Fig. 6 shows the convergence process of JPML. In training,
the maximum iteration is set as 30, while JPML typically
converges within 5 iterations. As can be seen in Fig. 6(a),
for each iteration of PL and ML, JPML manages to keep
the averaged error between W(t)

1 and W(t)
2 as low as 10−5.

By adding positive correlations and negative competitions
into patch learning, much more accurate correlations closed
to ground truth can be learned. Quantitatively, the distance
between predictions and ground truth decreased 3.4 times,

Algorithm 2 Multi-Label Learning (ML)

as shown in Fig. 6(d) and (e). Note that the entries of
AUs (1,2) in Fig. 6(c) and (e) are empty because in CK+
AUs (1,2) always co-occur, leading to a zero variance during
the computation of correlation coefficient.

IV. DISENTANGLE COMMON AND SPECIFIC PATCHES

FOR HOLISTIC EXPRESSION RECOGNITION

Recent studies [21], [43] suggest that only few facial
parts contribute to expression disclosure and the evo-
cation of different expressions may involve the muscu-
lar movements from the same facial regions. Facial fea-
tures, therefore, can be disentangled into non-overlapped
groups of patches, or the so-called common and specific
patches. As indicated in [21] and [43], these patches usu-
ally provide better interpretation and generalization. This
section shows that our JPML framework can be generalized
for obtaining such patches with comparable performance.
Note that different from standard uniformly distributed
patches, e.g., [21], [43], we used our patch definition centered
at landmarks as discussed in Section III-B. We term this
special case of JPML the Common-Specific Active Patch
Learning (CS-APL).

A. Learning Common Patches

Common patches are defined as the most informative
patches across all expressions [21], [43]. Informed by this
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Fig. 6. Illustration of JPML on the CK+ dataset: (a) Error of 1
DL ‖W(t)

1 − W(t)
2 ‖2

F v.s. #iteration (t), (b) objective value in (8) v.s. #iteration, (c) ground
truth relation matrix (correlation coefficients between ground truth AU labels), (d) relation matrix at the initialization step (with patch learning only),
and (e) relation matrix computed by predictions of JPML. The difference of correlation coefficient between (c) and (d) is 0.51, and that between (c) and (e)
is 0.15, showing that JPML helps preserve the relations between AUs.

definition, we hypothesize that different expressions may share
a subset of facial patches. Recall that patch learning in
Section III-B is a single-task learning for individual AUs.
To model common patches, we reformulate the single-task
patch learning as a multi-task learning problem by rewriting
the patch regularizer:

�(W) =
49∑

p=1

∥
∥[wp

1 , . . . , wp
L ]∥∥2, (16)

where W ∈ R
D×L is the classification matrix for predicting

L expressions, and wp
� is the classification vector with respect

to the p-th patch and the �-th expression. This regularizer
selects patches across L expressions as one group, leading
to totally 49 groups. Due to the group-sparsity, the elements
in the same group can or cannot be selected simultane-
ously. This regularizer, thus, encourages a sparse selection
of patches that are commonly important for all expressions.
Common patches are selected as the groups with the largest
patch importance ‖[wp

1 , . . . , wp
L ]‖2. Note that different from

Sec. III-B, here the patch importance is defined across L
expressions (L = 6).

B. Learning Specific Patches

In contrast to common patches, Specific patches are
defined as the patches contributing to only one particular
expression. Different from learning common patches over
all 6 expressions, specific patches of facial expressions are
learned in pairs (L = 2). Learning specific patches using the
JPML framework can be characterized into the following steps.
First, we solve patch learning with the regularizer in (16),
and select the common patches as the top ones ranked
by patch importance. Then, similar to [43], excluding the
overlapping patches, the remaining ones are considered as the
specific patches. More discussion and results will be shown
in Section V-E.

V. EXPERIMENTS

This section evaluates the proposed JPML framework in
several scenarios: Within-dataset AU detection, cross-dataset
AU detection, qualitative results of patch learning, and holistic

expression recognition. We commence by experimental set-
tings and close by discussion.

A. Settings

1) Datasets: We evaluated JPML in three datasets that
involve posed and spontaneous facial behaviors in varied
contexts. Each database has been FACS-coded by well-
experienced coders. Inter-observer agreement in each was
quantified using coefficient κ , which controls for chance
agreement between coders, and it was maintained at κ ≥ 0.8,
which represents high inter-observer agreement. Because
severely skewed base rates attenuate estimates of classifier
performance [15], only AUs occurring more than 3% to
5% of the time were included for analysis. Across datasets,
10 to 11 AUs met this criterion.

(1) CK+ [22] is a leading testbed for facial expression
analysis. It consists of 593 sequences of posed facial actions
from 123 subjects. The last frames of each sequence were
selected as positive samples. In all, 593 images with 10 AUs
were used.

(2) GFT [27] consists of social interaction between
720 previously unacquainted young adults that were
assembled into groups of three persons each and observed
over the course of a 30-minute group formation task. Moderate
out-of-plane head motion and occlusion are presented in
the videos which makes the AU detection challenging.
Videos from 50 participants with AU coding were used.
For each AU, we randomly sampled 100 positive frames and
200 negative frames from each subject for the training set.

(3) BP4D [40] contains spontaneous facial
expressions in 41 young adults during various emotion
inductions while interacting with an experimenter.
Three hundred twenty-eight videos (41 participants×8
videos each) were used. For each AU, we randomly sampled
50 positive frames and 100 negative frames from each subject
for the training set.

Even though AUs with very low base rates were omitted,
skewness nevertheless varied considerably. To control for the
effects of skewness on AU detection, test statistics were
normalized using the procedure of [15]. By normalizing for
skewness we were able to reliably compare results within and
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TABLE II

SKEWNESS ON EACH AU WITHIN DIFFERENT DATASETS

between datasets. Table II summarizes the skew factor defined
as the ratio of the number of negative samples to the number
of positive ones.

2) Pre-Processing: IntraFace [8] was used to track 49 facial
landmarks. Tracked landmarks were registered to a refer-
ence face using similarity transform. Appearance features
were extracted using SIFT descriptor [45] at frame level,
resulting in 49×128-D features for each image. To take full
advantage of the datasets, we divided GFT and BP4D into
10 splits of independent participants. Because CK+ only
contains 593 images, 5 splits were adopted. Each experiment
was conducted using a leave-one-split-out protocol, i.e., train
on (n − 1) splits and test on the remaining one. Results were
reported after all n splits were evaluated.

3) Evaluation Metrics: We used two metrics F1-Norm
(frame-based) and F1-Event (segment-based). F1-Norm [15] is
computed by multiplying false negatives and true negatives by
the factor of skewness, which is computed as the ratio of pos-
itive samples over negative ones. F1-Norm skew-normalizes
the standard F1 metric and enables comparison both within
and between datasets. On the other hand, F1-Event [9] serves
as a segment-based metric defined as the harmonic mean
between event-based recall E R and event-based precision E P:
F1-Event = 2·E R·E P

E R+E P . For each method, we computed the
averaged metric over all AUs (denoted as AA.), and averaged
over only the AUs with relations (denoted as AR.).

4) Alternative Methods: To investigate the benefits of
JPML, we compared it with baseline methods that include
neither Patch Learning (PL) nor Multi-label Learning (ML),
and methods that focus on either PL or ML alone.
For baseline methods, we trained a Linear SVM (LSVM) [12]
on individual AU. As a baseline for feature learning, we used
L1-regularized logistic regression (LL1) [12]. Neither LSVM
nor L1-regularized logistic regression used patches.

For PL methods, we chose three for comparison. The first
is SP-SVM, a baseline SVM trained on manually-defined
patches. These patches are informed by observations or by
FACS (e.g., [5], [37], [45]). Specifically, the patches used in
SP-SVM were defined as landmarks #1∼#10 for AUs 1, 2
and 7, #11∼#30 for AU 6, #11∼#19 for AUs 11 and 14,
#32∼#49 for all lower-face AUs. See patch indices in Fig. 1(c).
For state-of-the-art PL methods, we compared Structure Pre-
serving Sparse Decomposition (SPSD) [30] and Multi-task
Sparse Learning (MTSL) [43]. For SPSD, we computed K-
SVD [24] to learn AU atoms on the manually-defined patches.
Unlike the two-layer structure used in the original work,
we used one layer of SPSD to learn an AU dictionary,
because GFT and BP4D do not contain expressions labels.

TABLE III

COMPARISONS ON THE CK+ DATASET. BRACKETED NUMBERS
STAND FOR THE BEST PERFORMANCE; BOLD NUMBERS

FOR THE SECOND BEST.

In our experiments, we implemented MTSL using as our
patch learning algorithm (Algo. 1) and patches centered at
facial landmarks. Note that the original MTSL was defined on
emotion bases using uniform segmentation on face images.
Following the naming convention [43], we term this variation
as Active Patch Learning (APL).

For ML methods, we compared JPML with MT-MKL [41]
using RBF and polynomial kernels with the implementation
provided by the authors. Because MT-MKL involves com-
puting multiple kernel matrices, it is computationally pro-
hibitive for use with large datasets such as GFT and BP4D.
For this reason, MT-MKL was carried out only on CK+.
Following [41], we employed 3 AU groups: AUs (1,2), (6,12),
and (15,17). We term our multi-label learning (Algo. 2) as ML.
We tuned the parameters in Algos. 1 and 2 as follows: α
is cross-validated within {10−3, 10−4, 10−5}, η1 = 10−4,
γ = 2000, μ = 10−4, η2 = 2000, β1 = 10−3, and β2 = 10−4.

B. Within-Dataset Action Unit Detection

This section evaluates JPML and alternative methods for
within-dataset AU detection. Tables III∼V present results in
CK+, GFT, and BP4D, respectively. 10 AUs were evaluated
in CK+ dataset; 11 AUs were evaluated in GFT and BP4D.
In total, 32 AUs were used cross all three datasets. AUs without
relationships are underlined. We excluded these AUs for ML
and JPML and denoted their results as “−”. Because each AU
is pre-segmented in CK+ and only peak frames are AU coded,
we quantified performance using only F1-Norm. For GFT and
BP4D where all video frames contain AU labels, we reported
both F1-Norm and F1-Event. Below we discuss the results
from three perspectives: patch learning, multi-label learning,
and the proposed joint framework JPML.

1) Patch Learning (PL): This paragraph addresses the ques-
tion: Does APL improve performance against feature learning
and alternative PL methods? Across all three datasets, we eval-
uated a total of 32 AUs with F1-Norm, and 22 with F1-event.
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TABLE IV

COMPARISONS ON THE GFT DATASET. BRACKETED NUMBERS INDICATE THE BEST PERFORMANCE; BOLD NUMBERS INDICATE THE SECOND BEST.

TABLE V

COMPARISONS ON THE BP4D DATASET. BRACKETED NUMBERS INDICATE THE BEST PERFORMANCE; BOLD NUMBERS INDICATE THE SECOND BEST.

APL outperformed feature learning (LL1 and LSVM)
in 26 of 32 with F1-Norm, and 14 of 22 with F1-event.
Compared to alternative PL approaches (SP-SVM and SPSD)
that used uniformly distributed patches, APL performed
better in 30 of 32 comparisons with F1-Norm, and 17 of 22
with F1-event. A possible explanation is that APL defined
patches around facial landmarks, and thus better adapted
to spontaneous expressions that involve motions, such as
lower-face AUs. As can be observed, compared to uniform
patches used in alternative methods, APL performed more
effectively on lower-face AUs.

2) Multi-Label Learning: This paragraph discusses the ben-
efits of multi-label learning, which models explicitly the
relations between AUs. Closest to our work is MT-MKL that
assumes classifiers within the same AU group behave simi-
larly. On the contrary, our ML (Sec. III-C) considers positive
correlation as well as negative competition on labels (instead
of classifiers), and thus more naturally fits the problem in hand;
yet MT-MKL only considers positive correlation. In Table III,
averaging F1-Norm over the 6 AUs we implemented
for MT-MKL, ML outperformed against MT-MKL by 8.8%.

In Tables IV and V, we have seen that ML consistently
outperforms standard binary classifiers (LL1, LSVM, SPSD
and SP-SVM). The improvement is more obvious for AUs
with large skewness, such as AUs 1, 2 and 23 in GFT,
showing that relations between AU labels are essential to assist
AU detection.

3) JPML: Compared to the baselines, APL or ML alone has
shown better performance over three datasets. This paragraph
focuses discussion on JPML, the proposed joint framework
that considers both PL and ML. In all, JPML achieved the
best or second best for 22/27 AUs in F1-Norm and for 12/18
AUs for F1-event. In Table III, JPML performed the best for
AUs 1, 2, 12 and 15, and improved about 1.3% and 5.0%
than APL and ML respectively for F1-norm. It improved more
than 7.3% and 7.8% for F1-Norm, and 13% and 67% for F1-
event than APL and ML respectively. In Tables IV and V, as
more spontaneous expressions were involved, the improvement
became more obvious. In all, JPML achieved the highest
overall scores in five comparisons using the three datasets.
In BP4D, APL was slightly higher than JPML for some AUs.
In no cases, the other methods matched or exceeded APL
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Fig. 7. Comparisons between within-dataset and cross-dataset across all
methods. “cross” in GFT means BP4D→GFT, for BP4D it is GFT→BP4D.

and JPML. This suggests our patch-based approach is able
to model discriminative information for AU detection, and
further boost the performance with an additional ML. In addi-
tion, JPML yielded improvements in AUs with larger skew
(e.g., AU 1 and AU 2 in GFT and BP4D), as shown in Table II.

C. Cross-Dataset Action Unit Detection

To evaluate the generalizability of the proposed JPML
against alternative methods, this section carries out two exper-
iments using the cross-dataset scenario. In particular, we
used GFT and BP4D by alternately training classifiers on
one dataset and test on the other, denoted as “GFT→BP4D”
and “BP4D→GFT”, respectively. Pro-processing, metrics,
and parameter settings follow Sec. V-A except that we
trained with all available data from one dataset instead of
previously 10 splits. Tables VI and VII show the results.

Observing the performance of APL, we found its
F1-norm is about 30% higher than baseline methods
for both GFT→BP4D and BP4D→GFT. In specific, on
both experiments, for F1-norm, APL outperformed standard
feature selection methods (LL1 and LSVM) in 17/22 AUs, and
manually defined patch-based methods (SPSVM and SPSD)
in 17/22 AUs. For F1-event, APL outperformed SPSVM and
SPSD in 15/22 AUs. Comparing the cross-dataset experiments
against within-dataset ones (Sec. V-B), the performance of
AUs 1 and 2 decreased dramatically for LSVM and LL1,
but not for SPSVM, SPSD and APL. This suggests that
patch-based methods generalized better than standard feature
learning methods. As Fig. 8 shows, the patches automatically
selected by APL are visually similar to hand-selected patches
in SPSVM and SPSD. The automatically selected patches are
close to human’s selection, and preserve different importance
for each patch. All serves as an evidence that the patch
selection ability of APL yields better generalizability
than standard feature learning or methods based on
manually defined patches, coinciding with the findings
in Sec. III-B1 and [43].

Given 9 AUs with known relations, ML generally
outperformed baseline methods that took no AU relations into
consideration, such as feature learning and algorithms based

on manually defined patches. For AUs with large skewness,
i.e., AUs 1, 2, 15, 17, 23 and 24, ML improved baselines
methods more than 50% in F1-norm and 30% in F1-event.
The results justify that AU relations employed by ML
help improve performance especially for imbalanced AUs.
Specifically, comparing to baseline methods, in F1-norm ML
outperformed SPSVM and SPSD in 12/18 AUs, and LSVM
and LL1 in 16/18 AUs. For F1-event, ML outperformed
SPSVM and SPSD in 16/18 AUs. This validates our statis-
tically derived AU relations can generalize from one dataset
to another.

JPML jointly models ML and APL, and from the two
cross-dataset experiments, consistently improves overall
performance against alternative methods. As can be observed
from Tables VI and VII, in F1-norm, taking the positively
correlated AUs 6 and 7 for example, APL outperformed
others in BP4D→GFT but not in GFT→BP4D; JPML was
able to achieve comparable performance on both experiments.
In addition, for the negatively competitive AUs 23 and 24, ML
outperformed APL in BP4D→GFT, while JPML consistently
retains the best performance. Overall, JPML achieved the
best and the second best F1-norm and F1-event in 16/18 AUs
and in 15/22 AUs in GFT→BP4D and BP4D→GFT,
respectively. Considering both the within-dataset and
cross-dataset experiments, we observed that JPML
outperformed ML or APL alone for AU detection.

Comparing the previous within-dataset scenario,
as illustrated in Fig. 7, the cross-dataset scenario
exhibits overall lower results due to the dataset shift.
Interestingly, among the cross-dataset experiment, we
found GFT→BP4D generally yields higher F1-event
than within-dataset scenario. One possible explanation is
because GFT has about 18% more training subjects than
BP4D (50 vs 41 subjects), leading to a broader diversity in the
training set. Another explanation is that in BP4D many videos
contain only negative labels for some AUs. In this sense,
predicting temporally consistent events are relatively easy,
and thus F1-event tends to be slightly higher than F1-norm.
Finally, because F1-event captures the agreement between the
ground truth events and the predicted events, we found in our
results that F1-event prefers a frequent occurrence of positive
predictions (in this case the event-based recall is high), which
instead leads to a low F1-norm due to the low frame-based
recall.

D. Qualitative Results of Patch Learning

To provide a deeper understanding of the JPML method, this
section visualizes the learned patches in terms of AU detection
and holitic expression recognition.

1) Learning Patches for AU Detection: Fig. 8 shows the
qualitative results of our APL approach. Below we summarize
our reasonings for each AU.

• AUs 1 and 2: For both AUs, APL identified important
patches around eyes and brows. Inner brow for AU 1
was identified, emphasizing the appearance changes by
pulling inner eyebrows. For AU 2, APL learned more
importance on upper eyelids, suggesting an eye cover fold
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Fig. 8. Visualization of patch importance for AUs generated from the GFT dataset [27]. Weights on each patch are computed as the norm of their classification
vectors, and then normalized to [0,1]. The warmer the patch represents, the more importance it is.

TABLE VI

COMPARISONS ON BP4D→GFT. BRACKETED NUMBERS INDICATE THE BEST PERFORMANCE; BOLD NUMBERS INDICATE THE SECOND BEST.

stretching in a strong AU2. Note that the lateral part of
the brow could be pulled by AU 2, and thus the inner
corner of brows could move a bit, as suggested by the
discovered patches.

• AU 12: APL emphasized upper lip and lower nose, the
regions covering deepened nasolabial furrow. We also
observed that patches selected for AUs 6 and 7 are
similar to 12, suggesting AU 12 is an important source
that triggers, or co-occurs, frequently with AUs 6 and 7.
This observation coincides with the AU relations discov-
ered in Table I.

• AU 14: AU 14 causes appearance changes of flatten lips
and lip corner wrinkling, as suggested by the important

patches on upper lips. Interestingly, APL also emphasized
the patches on lower nose, capturing the appearance
change of stretching nostril wing while 14 was present.

• AUs 15, 23 and 24: These AUs describe the depressor,
tightener, and pressor of lips. In contrast to AU 14, in
these three scenarios, APL identified important patches
around mouth, but not lower nose.

• AU 17: Informed by FACS, the criteria for AU 17 in
17+23 are the same as for 17 alone. Here, APL identified
similar patches for AU 17 as for AU 23. An explanation
for the similar patches distribution is that some of accom-
panying signs of the lower lip pushed up by AU 17 are
altered by the presence of AU 23.
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TABLE VII

COMPARISONS ON GFT→BP4D. BRACKETED NUMBERS INDICATE THE BEST PERFORMANCE; BOLD NUMBERS INDICATE THE SECOND BEST.

Fig. 9. Visualization of patch importance for upper AUs from the GFT dataset
[27] (see illustration of each AU in Fig. 8).

From the visualization in Fig. 8, the patches around lower
face contain more information to discriminate lower-face AUs.
However, it is unclear for upper-face AUs. To further study
the distribution of patches importance on upper faces, we
performed a complementary experiment only on upper-face
AUs and their associated patches. Fig. 9 illustrates the results.
In contrast to Fig. 8, we drew several interesting observations
below. We conjecture that large variation of lower face may
interfere the identification of patches on upper face.

• AU 6: APL identified patches on lower lids and nose
that show the appearance changes of face as FACS
describes. However, in Fig. 8, patches around cheek
were less emphasized probably due to the interference
of lower face AUs.

• AU 7: Fig. 9 clearly tells the importance on lower
eyelids, due to appearance change of AU 7 as informed
by FACS. Compared to Fig. 8, patches on eyebrows and
nose were shown less meaningful.

• AUs 1 and 2: Patch importance distributions are similar
between Figs. 8 and 9.

2) Learning Patches for Holistic Expressions: Patch learn-
ing also can be used to learn discriminative patches for
holistic facial expressions, since they can be described by the
combination of AUs as shown in Table VIII. In particular,

with the AU labels replaced by expression labels, we applied
patch learning algorithm in Algo. (1). The patch importances
learned are shown in Fig. 10.

Fig. 10 represents the patch importance distribution learned
on holistic expressions using the CK+ dataset. Based on
the patch importance, we observe the relations between the
patches identified by APL and the AU composition rule as
shown in Table. VIII. We discuss these relations below.

• Anger: APL identifies patches on eyebrows, eyes, and
outer mouth. From Fig. 8, eyes and outer lips are iden-
tified for AU 7 and AU 23 separately. Thus in patches
importance level, patches identified for AU 7 and AU 23
are included in important patches for anger.

• Disgust: For a disgust face, APL identifies patches on
nose and mouth. The highest patch importance happened
on the center of nose, corresponding to the active region
of AU 9 (nose wrinkler). In addition, the learned patch
importance on the lower nose and lips corners showed a
similar pattern with AU 15 in Fig. 8. The correspondence
to AUs 9 and 15 complies with the AU composition rule
for the disgust expression as shown in Table VIII.

• Happiness: APL identifies lower nose and upper lip
corresponding to patch learning for AU 6 and AU 12
separately. Similar results are shown for fear, sadness,
and surprise.

E. Holistic Expression Recognition

As discussed in Sec. IV, JPML can be extended for
learning common and specific patches, termed as CS-APL,
for holistic facial expressions [21], [43]. We used SPAMS3

to obtain a solution to patch learning, and 10-fold cross
validation for model selection. The original SPAMS toolbox
only allows for group-sparsity defined within each column.
Recall W = [w1, . . . , wL ] represents the classification matrix
for L expressions, where w� is the model learned for the �-th
expression. To cope with the group-sparsity across columns in
Eq. (16), we reformulate the patch learning as follows.

3http://spams-devel.gforge.inria.fr/
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Fig. 10. Visualization of patch importance learned for 7 holistic expressions on the CK+ dataset [22].

TABLE VIII

AU COMPOSITION RULE FOR HOLISTIC FACIAL EXPRESSIONS

First, we rewrite the original model W ∈ R
D×L into the

block diagonal matrix W ∈ R
DL×L as:

W =

⎡

⎢
⎢
⎢
⎣

w1 0 0 0
0 w2 0 0
...

. . .
...

0 0 · · · wL

⎤

⎥
⎥
⎥
⎦

. (17)

Due to linearity of our model, the multi-label output y ∈ R
L

for L expressions can be equivalently expressed as:

y = W�x = W
�[x�, . . . , x�

︸ ︷︷ ︸
L duplicates

]�. (18)

Using (17) and data duplicates, suppose we obtain the solution
from SPAMS as:

W∗ =

⎡

⎢
⎢
⎢
⎣

w∗
11 w∗

21 · · · w∗
L1

w∗
12 w∗

22 w∗
L2

...
. . .

...
w∗

1L w∗
2L · · · w∗

L L

⎤

⎥
⎥
⎥
⎦

. (19)

Although W∗ is not in the block diagonal form of desire, W∗
and W can be shown interchangeable by observing:

W∗�

⎡

⎢
⎣x�, . . . , x�

︸ ︷︷ ︸
L duplicates

⎤

⎥
⎦

�

=
⎡

⎣

(
L∑

�=1

w∗
1�

)�
x, . . . ,

(
L∑

�=1

w∗
L�

)�
x

⎤

⎦

�

. (20)

Using (18) and letting wi = ∑L
�=1 w∗

i�, W∗ can be written into
W by summing to the diagonals and setting off-diagonals to
zeros, showing that the solution to W is equivalently obtained
using SPAMS.

TABLE IX

ACCURACY ON THE CK+ DATASET. BRACKETED NUMBERS INDICATE THE

BEST PERFORMANCE; BOLD NUMBERS INDICATE THE SECOND BEST.

In this experiment, we used CK+ [22] with six holis-
tic expressions. For learning common patches, we put the
128-dimensional wi across L expressions (L = 6) in one
group, thus 49 groups can be obtained. For learning specific
patches, with the same group setting, pairwise expressions
(L = 2) were learned at one time. We term this extension for
selecting common and specific patches as Common-Specific
Active Patch Learning (CS-APL). In this experiment, top rank
20 patches shared across six expressions were selected as
common patches. For each expression, specific patches were
selected over all C2

6 pairs of expressions. Then common and
specific patches were imported into an SVM to predict each
expression. Table IX shows the accuracy of CS-APL. The tun-
ing parameters in SPAMS were set as λ = 10−4 and #itr= 500.

We compared CS-APL with the state-of-the-art patch
learning methods: Common Patch Learning (C-PL) [43],
Common-Specific PL (CS-PL) [43] and Feature Disentangling
Machine (FDM) [21]. CS-PL performed a two-stage strategy
that first learned common patches as C-PL, and then
combined face verification to learn specific patches excluding
the common ones. FDM is a unified algorithm to disentangle
features into three types of patches, i.e., common patches,
specific patches, and useless patches. As in FDM, we used
CS-APL (Sec. IV) to disentangle features into the three types
of patches, and selected common and specific patches for
holistic expression recognition. In addition, we implemented
APL (as mentioned in Sec. III-B.1) for comparison.

Table IX shows our results. Since CK+ is a relatively
clear-cut and posed dataset, linear SVM with our definition of
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Fig. 11. An illustration of selected patches using CS-APL: (a) shows the common patches selected across 6 holistic expressions in CK+ dataset using a
10-fold protocol. The numbers indicate the times that each patch was selected in each fold. The warmer the color, the more patch importance JPML learned.
(b)–(g) show the specific patches selected for each expression pair following [21]. Blue lines represent the shape of tracked landmarks. Green and red rectangles
indicate the selected patches for respective expression pair.

patches reaches a satisfactory result. However, as discussed in
Sec. III-B.1, a linear SVM treats each feature equally without
consideration of local dependencies as patches. The accuracy
for each expression of C-PL and CS-PL are given by the
paper [43]. As only the average accuracy for all expressions
are given in paper [21], accuracy for each expression is marked
as “–” in Table IX. In patch learning that treats features in
groups, our proposed common/specific patch learning algo-
rithm performs better when comparing with existing methods.

To visualize the common/specific patches learned by the
proposed CS-APL, Fig. 11 shows examples of learned patched
by the proposed CS-APL. Fig. 11(a) shows the common
patches learned using a 10-fold experiments. There are great
overlaps between different fold experiments (almost 10 for all
selected patches). It implies that our algorithm is robust to the
selection of the training set. The selected common patches are
around the areas of mouth and eyebrows, which are consistent
with FACS [11], and patches learned by C-PL/CS-PL [43] and
FDM [21].

Fig. 11(b)-(g) show a few examples of the learned spe-
cific patches. As can be seen, expression-specific patches
for the target expression are closely related to FACS [11].
Recall in Table VIII, an expression can be inferred using
combinations of AUs. For example, in Fig. 11(d) and (e),
the specific patches selected for disgust are located around
the nose, which are related to AU 9 (nose wrinkler). For the
surprise expression, as shown in in Fig. 11(c) and (e), patches
around eyes are the primary AUs, which correspond to AUs 1,
2 and 5 as indicated in Table VIII. Similar results can be found
in other expressions. Compared with alternative methods, the
proposed CS-APL achieved comparable performance while
maintaining interpretable common/specific patches.

F. Discussion

Given the aforementioned experiments, we summarize our
observations from the results:

1. JPML outperformed patch learning and multi-
label learning in both within- (Sec. V-B) and

cross-dataset (Sec. V-C) scenarios, suggesting that
jointly modeling dependencies between features and
AUs can improve performance.

2. The patch importance learned by JPML (Fig. 8) showed
visually similar distributions for AUs with positive corre-
lations (Table I). Results of patch learning methods and
JPML suggest that learning with patches is more advan-
tageous than with individual features for AU detection.

3. Holistic expressions can be decomposed into com-
mon and specific patches (Fig. 11), and competi-
tive performance can be obtained using only these
patches (Table IX), suggesting that patches contribute
unequally to expression recognition.

VI. CONCLUSION

We have presented a Joint Patch and Multi-label Learn-
ing (JPML) framework for facial AU and holistic expression
recognition. JPML jointly learns a discriminative multi-label
classifier and patch importance for different AUs. To model
the dependencies between AUs, we statistically derived two
types of AU relations, namely positive correlations and neg-
ative competitions, from more than 350,000 annotated video
frames. With slight modification, we showed that JPML can
be extended to learn common and specific patches for holistic
expression recognition. Extensive experiments demonstrated
the effectiveness of JPML on three datasets over alternative
methods, including standard feature learning and methods
based on either patch learning or multi-label learning alone.
Future work includes a non-linear extension and an automatic
learning of relations between AUs and expressions. Moreover,
instead of using manually-defined patches centered at facial
landmarks, directly learning the important regions from raw
face images could be another direction.
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